Name: Philipp Schicho (email_not_shown)
Date: 05/05/17-06:03:00 PM Z


I am trying to convert certain two-loop integrals into TFI notation. Surprisingly this works for certain integrals while others keep returning a product over variables like Feyncalc`ToTFI`Private` this is not even consistent as it keeps changing.

For example the following expression

ToFI[(32 CA^3 mE^2 FeynAmpDenominator[PropagatorDenominator[Momentum[p1,D]],PropagatorDenominator[Momentum[p2,D],I mE],PropagatorDenominator[-Momentum[p1,D]+Momentum[p2,D],I mE],PropagatorDenominator[-Momentum[p1,D]+Momentum[p2,D],I mE],PropagatorDenominator[-Momentum[p1,D]+Momentum[p2,D],I mE]] Pair[Momentum[p1,D],Momentum[q,D]] Pair[Momentum[p2,D],Momentum[q,D]] (-Pair[LorentzIndex[Lor1,D],Momentum[q,D]] Pair[LorentzIndex[Lor2,D],Momentum[q,D]]+Pair[LorentzIndex[Lor1,D],LorentzIndex[Lor2,D]] Pair[Momentum[q,D],Momentum[q,D]]) SMP["g_s"]^6 Subscript[zeta, 1] SUNDelta[SUNIndex[a],SUNIndex[b]])/((-1+D) Pair[Momentum[q,D],Momentum[q,D]])//Expand,{p1,p2},{q}]

resulted in

(1/((D-1) q^2))32 mE^2 Subscript[zeta, 1] Subsuperscript[C, A, 3] Subsuperscript[g, s, 6] \[Delta]^(ab) (q^2 g^(Lor1Lor2)-q^Lor1 q^Lor2) FeynCalc`ToTFI`Private`dq1^FeynCalc`ToTFI`Private`a1.FeynCalc`ToTFI`Private`dq2^FeynCalc`ToTFI`Private`a2.FeynCalc`ToTFI`Private`pq1^(FeynCalc`ToTFI`Private`s3+1).FeynCalc`ToTFI`Private`pq2^(FeynCalc`ToTFI`Private`s4+1).FeynCalc`ToTFI`Private`q1q1^FeynCalc`ToTFI`Private`s1.FeynCalc`ToTFI`Private`q1q2^FeynCalc`ToTFI`Private`s5.FeynCalc`ToTFI`Private`q2q2^FeynCalc`ToTFI`Private`s2.FeynCalc`ToTFI`Private`c1(0)^(FeynCalc`ToTFI`Private`n1+1).FeynCalc`ToTFI`Private`c1(I mE)^(FeynCalc`ToTFI`Private`n1+1).FeynCalc`ToTFI`Private`c2(FeynCalc`ToTFI`Private`FakeMass)^(FeynCalc`ToTFI`Private`n2+1).FeynCalc`ToTFI`Private`c3(FeynCalc`ToTFI`Private`FakeMass)^(FeynCalc`ToTFI`Private`n3+1).FeynCalc`ToTFI`Private`c4(FeynCalc`ToTFI`Private`FakeMass)^(FeynCalc`ToTFI`Private`n4+1).FeynCalc`ToTFI`Private`c5(I mE)^(FeynCalc`ToTFI`Private`n5+3)

Maybe someone can help me with this. Frankly I am quite los atm.

Cheers,
Philipp



This archive was generated by hypermail 2b29 : 11/24/17-01:40:03 PM Z CET