The counterterm amplitude:
![]()
![]()
![amp4 = -I FeynRule[lala, {QuantumField[DiracBar[Particle[Electron, RenormalizationState[0]]]][p2], QuantumField[Particle[Electron, RenormalizationState[0]]][p1]}] /. ParticleMass[Photon, ___] -> 0 /. p2 -> -p1 // Simplify](../HTMLFiles/index_77.gif)
![]()
The Dirac equation:
![]()
![]()
We now add the two amplitudes and demand that the complete photon propagator to order
have the same pole position and residue as the bare propagator apart from gauge dependent terms (see e.g. Weinberg). Thus we demand that S'(
) have a pole at at γ
=
with residue 1, where S'(
) =
:
![]()
![1/8 (-8 δm^(0 ) Z _ 2^(0 ) + 8 m _ ψ^(ó 0 ) + 1/(π^4 p _ 1^2) (π^(D/2) (e^(0 ))^2 Γ(2 - D/2) ((Underoverscript[∫, 0, arg3] ((x - 1) (x p _ 1^2 - (m _ ψ^(ó 0 ))^2))^(D - 4)/2 d x) ((m _ ψ^(ó 0 ))^4 - 3 p _ 1^2 (m _ ψ^(ó 0 ))^2) - ((m _ ψ^(ó 0 ))^2)^(D/2)) μ^(4 - D) + π^2 (8 π^2 (Z _ 2^(0 ) - 1) γ · p _ 1 p _ 1^2 + m _ ψ^(ó 0 ) ((e^(0 ))^2 m _ ψ^(ó 0 ) (p _ 1^2 - (m _ ψ^(ó 0 ))^2) - 8 π^2 Z _ 2^(0 ) p _ 1^2))))](../HTMLFiles/index_88.gif)
sigmafull to to order
is sigmafull-amp4OnShell-sigmafullOnShell, that is, sigmafull with
substituted with sigmafullOnShell (since it must cancel sigmafullOnShell).
We abbreviate sigmafull to sigmaint[δ] and sigmafullOnShell to sigmaint[0], and this is then the residue:
![Clear[sigmaint] ; z2eqleft[δ_] = (DiracGamma[Momentum[p1]] - ParticleMass[Fermion[7], RenormalizationState[0]])/(DiracGamma[Momentum[p1]] - ParticleMass[Fermion[7], RenormalizationState[0]] - (Normal[Series[sigmaint[δ], {δ, 0, 2}]] + amp4 - amp4OnShell - sigmaint[0]))](../HTMLFiles/index_91.gif)
![]()
![z2eqq = Limit[ (z2eqleft[δ] // ExpandGammas[#, TaylorOrder -> 2] & // DimensionExpand[#, TaylorOrder -> 1] &) /. DiracGamma[Momentum[p1]] -> ParticleMass[Fermion[7], RenormalizationState[0]] + δ /. IntegrateHeld -> Integrate, δ -> 0]](../HTMLFiles/index_93.gif)
![]()
![]()
![]()
This is then the value of
(infinite in the limit
->4) following form the demand that the residue be 1:
![z2fin = CouplingConstant[QED[2], 2, RenormalizationState[0]] /. sigmasolve /. {sigmaint '[0] -> (∂ _ δ (ampinfinitiesfull /. Pair[Momentum[p1], Momentum[p1]] -> (ParticleMass[Electron, RenormalizationState[0]] + δ)^2) /. δ -> 0)} // FullSimplify](../HTMLFiles/index_99.gif)
![1/(4 π^4 (m _ ψ^(ó 0 ))^3) (μ^(-D) (4 π^4 μ^D (m _ ψ^(ó 0 ))^3 - (e^(0 ))^2 (π^(D/2) μ^4 Γ(2 - D/2) ((m _ ψ^(ó 0 ))^2)^(D/2) + π^2 μ^D (m _ ψ^(ó 0 ))^4 - π^(D/2) μ^4 Γ(2 - D/2) Underoverscript[∫, 0, arg3] ((x - 1)^2 (m _ ψ^(ó 0 ))^2)^(D/2)/(x - 1)^4 d x + 2 π^(D/2) μ^4 Γ(3 - D/2) Underoverscript[∫, 0, arg3] (x ((x - 1)^2 (m _ ψ^(ó 0 ))^2)^(D/2))/(x - 1)^5 d x)))](../HTMLFiles/index_100.gif)
Since
is of the form 1-O(
), to have -
cancel sigmafullOnShell to order
,
must be simply sigmafullOnShell:
The scalar integral with the above values inserted and the limit
->4 taken. The ultraviolet (dimensional) infinities have cancelled, but infrared divergencies remain:
![sigmaint = sigmafull /. -amp4OnShell -> sigmafullOnShell /. {CouplingConstant[QED[2], 2, RenormalizationState[0]] -> z2fin} // ExpandGammas[#, TaylorOrder -> 2] & // DimensionExpand[#, TaylorOrder -> 1, Dimension -> D] & // Simplify](../HTMLFiles/index_107.gif)
![1/8 (1/(4 (D - 4) π^2) ((÷J (D - 4) + 2) (e^(0 ))^2 (log(π) D - 4 log(π) + 2) ((D - 4) log(μ) - 1) (2 i π D - 4 D + 2 (D - 4) log(-(m _ ψ^(ó 0 ))^2) + (D - 4) log((m _ ψ^(ó 0 ))^2) - 8 i π + 22) (m _ ψ^(ó 0 ))^2) + 8 m _ ψ^(ó 0 ) + 1/(2 π^2 p _ 1^2) ((-÷J - 2/(D - 4)) (log(π) (D - 4) + 2) (1 - (D - 4) log(μ)) (-1/2 (D - 4) log((m _ ψ^(ó 0 ))^2) (m _ ψ^(ó 0 ))^4 - (m _ ψ^(ó 0 ))^4 + (1/2 (D - 4) Underoverscript[∫, 0, arg3] log((x - 1) (x p _ 1^2 - (m _ ψ^(ó 0 ))^2)) d x + 1) ((m _ ψ^(ó 0 ))^4 - 3 p _ 1^2 (m _ ψ^(ó 0 ))^2)) (e^(0 ))^2 + 2 (8 π^2 γ · p _ 1 p _ 1^2 (1/(16 π^2) ((1 - (D - 4) log(μ)) (16 π^2 ((D - 4) log(μ) + 1) - (e^(0 ))^2 (2 (Underoverscript[∫, 0, arg3] (x ((D - 4) log((x - 1)^2 (m _ ψ^(ó 0 ))^2) + 2))/(x - 1) d x) (log(π) (D - 4) + 2) + ((÷J (D - 4) + 2) ((D - 4) Underoverscript[∫, 0, arg3] log((x - 1)^2 (m _ ψ^(ó 0 ))^2) d x + 2) (log(π) D - 4 log(π) + 2))/(D - 4) + 4 ((D - 4) log(μ) + 1) - ((÷J (D - 4) + 2) (log(π) D - 4 log(π) + 2) ((D - 4) log((m _ ψ^(ó 0 ))^2) + 2))/(D - 4)) m _ ψ^(ó 0 ))) - 1) + m _ ψ^(ó 0 ) ((e^(0 ))^2 m _ ψ^(ó 0 ) (p _ 1^2 - (m _ ψ^(ó 0 ))^2) - 1/2 (1 - (D - 4) log(μ)) p _ 1^2 (16 π^2 ((D - 4) log(μ) + 1) - (e^(0 ))^2 (2 (Underoverscript[∫, 0, arg3] (x ((D - 4) log((x - 1)^2 (m _ ψ^(ó 0 ))^2) + 2))/(x - 1) d x) (log(π) (D - 4) + 2) + ((÷J (D - 4) + 2) ((D - 4) Underoverscript[∫, 0, arg3] log((x - 1)^2 (m _ ψ^(ó 0 ))^2) d x + 2) (log(π) D - 4 log(π) + 2))/(D - 4) + 4 ((D - 4) log(μ) + 1) - ((÷J (D - 4) + 2) (log(π) D - 4 log(π) + 2) ((D - 4) log((m _ ψ^(ó 0 ))^2) + 2))/(D - 4)) m _ ψ^(ó 0 ))))))](../HTMLFiles/index_108.gif)
![]()
![1/8 (((÷J δ - 2) (e^(0 ))^2 (δ log(π) - 2) (δ log(μ) + 1) (-2 log(-(m _ ψ^(ó 0 ))^2) δ - log((m _ ψ^(ó 0 ))^2) δ - 2 i π δ + 4 δ + 6) (m _ ψ^(ó 0 ))^2)/(4 π^2 δ) + 8 m _ ψ^(ó 0 ) + 1/(2 π^2 p _ 1^2) ((2/δ - ÷J) (2 - δ log(π)) (δ log(μ) + 1) (1/2 δ log((m _ ψ^(ó 0 ))^2) (m _ ψ^(ó 0 ))^4 - (m _ ψ^(ó 0 ))^4 + (1 - 1/2 δ Underoverscript[∫, 0, arg3] log((x - 1) (x p _ 1^2 - (m _ ψ^(ó 0 ))^2)) d x) ((m _ ψ^(ó 0 ))^4 - 3 p _ 1^2 (m _ ψ^(ó 0 ))^2)) (e^(0 ))^2 + 2 (8 π^2 γ · p _ 1 p _ 1^2 (1/(16 π^2) ((δ log(μ) + 1) (-(((÷J δ - 2) (δ Underoverscript[∫, 0, arg3] log((x - 1)^2 (m _ ψ^(ó 0 ))^2) d x - 2) (δ log(π) - 2))/δ - 2 (Underoverscript[∫, 0, arg3] (x (2 - δ log((x - 1)^2 (m _ ψ^(ó 0 ))^2)))/(x - 1) d x) (δ log(π) - 2) - ((÷J δ - 2) (δ log((m _ ψ^(ó 0 ))^2) - 2) (δ log(π) - 2))/δ - 4 δ log(μ) + 4) m _ ψ^(ó 0 ) (e^(0 ))^2 - 16 π^2 (δ log(μ) - 1))) - 1) + m _ ψ^(ó 0 ) ((e^(0 ))^2 m _ ψ^(ó 0 ) (p _ 1^2 - (m _ ψ^(ó 0 ))^2) - 1/2 (δ log(μ) + 1) p _ 1^2 (-(((÷J δ - 2) (δ Underoverscript[∫, 0, arg3] log((x - 1)^2 (m _ ψ^(ó 0 ))^2) d x - 2) (δ log(π) - 2))/δ - 2 (Underoverscript[∫, 0, arg3] (x (2 - δ log((x - 1)^2 (m _ ψ^(ó 0 ))^2)))/(x - 1) d x) (δ log(π) - 2) - ((÷J δ - 2) (δ log((m _ ψ^(ó 0 ))^2) - 2) (δ log(π) - 2))/δ - 4 δ log(μ) + 4) m _ ψ^(ó 0 ) (e^(0 ))^2 - 16 π^2 (δ log(μ) - 1))))))](../HTMLFiles/index_110.gif)
![]()
![((Underoverscript[∫, 0, arg3] x/(x - 1) d x) m _ ψ^(ó 0 ) (m _ ψ^(ó 0 ) - γ · p _ 1) (e^(0 ))^2)/(2 π^2) + ((Underoverscript[∫, 0, arg3] log((x - 1)^2 (m _ ψ^(ó 0 ))^2) d x) m _ ψ^(ó 0 ) (m _ ψ^(ó 0 ) - γ · p _ 1) (e^(0 ))^2)/(4 π^2) + ((Underoverscript[∫, 0, arg3] log((x - 1) (x p _ 1^2 - (m _ ψ^(ó 0 ))^2)) d x) m _ ψ^(ó 0 ) (3 p _ 1^2 m _ ψ^(ó 0 ) - (m _ ψ^(ó 0 ))^3) (e^(0 ))^2)/(8 π^2 p _ 1^2) + 1/(8 π^2 p _ 1^2) (m _ ψ^(ó 0 ) (log((m _ ψ^(ó 0 ))^2) (m _ ψ^(ó 0 ))^3 - (m _ ψ^(ó 0 ))^3 - 2 log(-(m _ ψ^(ó 0 ))^2) p _ 1^2 m _ ψ^(ó 0 ) - 3 log((m _ ψ^(ó 0 ))^2) p _ 1^2 m _ ψ^(ó 0 ) - 2 i π p _ 1^2 m _ ψ^(ó 0 ) + 7 p _ 1^2 m _ ψ^(ó 0 ) - 2 γ · p _ 1 p _ 1^2 + 2 γ · p _ 1 log((m _ ψ^(ó 0 ))^2) p _ 1^2) (e^(0 ))^2)](../HTMLFiles/index_112.gif)
Converted by Mathematica (July 10, 2003)