Construction of topologies:
![]()
Fields insertion:
![]()
Graphical representation of the process:
![]()
![[Graphics:../HTMLFiles/index_60.gif]](../HTMLFiles/index_60.gif)
Calculation of the amplitude:
![]()
![]()
The one-loop integrals are simplified, the spinors are divided off:
![]()

The loop integrals are expressed in terms of Passarino-Veltman symbols:
![]()
![]()
The Passarino-Veltman integrals are evaluated:
![]()
![1/(8 π^4 p _ 1^2) (μ^(-D) (e^(0 ))^2 ((m _ ψ^(ó 0 ))^2 (π^2 (p _ 1^2 - (m _ ψ^(ó 0 ))^2) μ^D + π^(D/2) Γ(2 - D/2) (Underoverscript[∫, 0, arg3] ((x - 1) (x p _ 1^2 - (m _ ψ^(ó 0 ))^2))^(D - 4)/2 d x) ((m _ ψ^(ó 0 ))^2 - 3 p _ 1^2) μ^4) - π^(D/2) μ^4 Γ(2 - D/2) ((m _ ψ^(ó 0 ))^2)^(D/2)))](../HTMLFiles/index_68.gif)
The value of the integral at
=
, which for this expression is equivlent to γ
=
:
![sigmafullOnShell = Limit[(ampinfinitiesfull // ExpandGammas[#, TaylorOrder -> 2] & // DimensionExpand[#, TaylorOrder -> 1, Dimension -> D] &) /. Pair[Momentum[p1], Momentum[p1]] -> ParticleMass[Electron, RenormalizationState[0]]^2 + δ /. IntegrateHeld -> Integrate, δ -> 0] // Simplify](../HTMLFiles/index_73.gif)

Converted by Mathematica (July 10, 2003)