The counterterm amplitude:
![]()
![]()
![amp4 = -I FeynRule[lala, {QuantumField[Particle[Vector[1], RenormalizationState[0]], LorentzIndex[μ1]][p2], QuantumField[Particle[Vector[1], RenormalizationState[0]], LorentzIndex[μ2]][p1]}] /. p2 -> -p1 // Simplify](../HTMLFiles/index_37.gif)
![]()
![]()
![1/(36 π^4 p _ 1^2 (m _ ψ^(ó 0 ))^2) (μ^(-D) (-6 π^(D/2) (e^(0 ))^2 Γ(2 - D/2) (((m _ ψ^(ó 0 ))^2)^(D/2) - (Underoverscript[∫, 0, arg3] ((m _ ψ^(ó 0 ))^2 + (x - 1) x p _ 1^2)^(D - 4)/2 d x) (m _ ψ^(ó 0 ))^4) μ^4 - (36 π^4 (Z _ 3^(0 ) - 1) μ^D + (e^(0 ))^2 (π^2 μ^D - 3 π^(D/2) μ^4 Γ(2 - D/2) Underoverscript[∫, 0, arg3] ((m _ ψ^(ó 0 ))^2 + (x - 1) x p _ 1^2)^(D - 4)/2 d x)) p _ 1^2 (m _ ψ^(ó 0 ))^2))](../HTMLFiles/index_40.gif)
We now add the two amplitudes and demand that the momentum coefficients of this sum vanish at
= 0. This demand is equivalent to demanding that the complete photon propagator have the same pole position and residue as the bare propagator apart from gauge dependent terms (see e.g. Weinberg).
![]()
This is then the value of
(infinite in the limit D->4) following from this demand:
![]()

The scalar integral with the above value of
inserted and the limit D->4 taken. The result is finite:
![]()
![]()
![]()
![-((Underoverscript[∫, 0, arg3] log((m _ ψ^(ó 0 ))^2 + (x - 1) x p _ 1^2) d x) (2 (m _ ψ^(ó 0 ))^2 + p _ 1^2) (e^(0 ))^2)/(12 π^2 p _ 1^2) + (log((m _ ψ^(ó 0 ))^2) (2 (m _ ψ^(ó 0 ))^2 + p _ 1^2) (e^(0 ))^2)/(12 π^2 p _ 1^2) - (e^(0 ))^2/(36 π^2)](../HTMLFiles/index_50.gif)
We may evaluate the integral with some numeric value of the constants:
![]()

The above is in agreement with the evaluation of the textbook formula (Weinberg equation 11.2.22):
![piWeinberg = 1/(2 π^2) ((IntegrateHeld[(1 - x) x Log[1 - (1 - x) x Pair[Momentum[p1], Momentum[p1]]/ParticleMass[Fermion[7], RenormalizationState[0]]^2], {x, 0, 1}]) CouplingConstant[QED[1], RenormalizationState[0]]^2)](../HTMLFiles/index_53.gif)
![((e^(0 ))^2 Underoverscript[∫, 0, arg3] (1 - x) x log(1 - ((1 - x) x p _ 1^2)/(m _ ψ^(ó 0 ))^2) d x)/(2 π^2)](../HTMLFiles/index_54.gif)
![]()

Converted by Mathematica (July 10, 2003)