**Next message:**V. Shtabovenko: "Re: Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Previous message:**zhangyaworld: "Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Maybe in reply to:**zhangyaworld: "Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Next in thread:**V. Shtabovenko: "Re: Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Reply:**V. Shtabovenko: "Re: Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Messages sorted by:**[ date ] [ thread ] [ subject ] [ author ]**Mail actions:**[ respond to this message ] [ mail a new topic ]

Hi Vladyslav,

Oh, I've found that instead of using

DiracTrace[GAD[i1, i2, i3].GA[6].GAD[i5, i6, i7].GA[6],DiracTraceEvaluate -> True];

and

DiracTrace[GAD[i1, i2, i3].((1 + GA[5])/2).GAD[i5, i6, i7].((1 + GA[5])/2), DiracTraceEvaluate -> True],

which leads to two different results, the following two commands result into the same results.

DiracTrace[GAD[i1, i2, i3].GA[6].GAD[i5, i6, i7].GA[6]// DotSimplify // DiracTrick // Simplify,DiracTraceEvaluate -> True];

and

DiracTrace[GAD[i1, i2, i3].((1 + GA[5])/2).GAD[i5, i6, i7].((1 + GA[5])/2)// DotSimplify // DiracTrick // Simplify, DiracTraceEvaluate -> True].

But I'm still not sure how to get the Correct result (I don't want to check each calculation by hand).

Thanks!

Best,

Ya

**Next message:**V. Shtabovenko: "Re: Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Previous message:**zhangyaworld: "Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Maybe in reply to:**zhangyaworld: "Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Next in thread:**V. Shtabovenko: "Re: Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Reply:**V. Shtabovenko: "Re: Eight Gamma Matrix involving Gamma5, within t'Hooft Scheme"**Messages sorted by:**[ date ] [ thread ] [ subject ] [ author ]**Mail actions:**[ respond to this message ] [ mail a new topic ]

*
This archive was generated by hypermail 2b29
: 02/16/19-06:40:01 PM Z CET
*