Dear developers and users of FeynCalc:
   I've calculated the process "Higgs decay into two gluons" at the leading order by FeynCalc.  In the final result, I just got a C_0(0,0,m_h^2,m_q^2,m_q^2,m_q^2) which should be -1/(2m_q^2) at the limit of zero Higgs mass (see my code below).
<< HighEnergyPhysics`FeynCalc`
onshell = {ScalarProduct[p1, p1] -> 0, ScalarProduct[p2, p2] -> 0, 
   ScalarProduct[p1, p2] -> Subscript[m, h]^2/2};
SetOptions[OneLoop, Dimension -> D];
num1 = -I mq/v (I Subscript[g, s])^2 (I) DiracTrace[
     GAD[mu].(GSD[k] + mq).GAD[
       nu].(GSD[k] + GSD[p2] + mq).(GSD[k] - GSD[p1] + mq)] /. 
   DiracTrace -> TR // 
  Simplify; num2 = -I mq/v (I Subscript[g, s])^2 (I)    DiracTrace[
     GAD[nu].(GSD[k] + mq).GAD[
       mu].(GSD[k] + GSD[p1] + mq).(GSD[k] - GSD[p2] + mq)] /. 
   DiracTrace -> TR // Simplify;
amp1 = num1 FAD[{k, mq}, {k + p2, mq}, {k - p1, mq}]/(2 Pi)^D // FCI;
amp2 = num2 FAD[{k, mq}, {k + p1, mq}, {k - p2, mq}]/(2 Pi)^D // FCI;
amp = (OneLoop[k, amp1 + amp2] // PaVeReduce) /. onshell // Simplify
1/(4 \[Pi]^2 v Subsuperscript[m, h, 2]) I mq^2 Subsuperscript[g, s, 2] (2 p1^mu p2^nu (4 mq^2 Subscript[C, 0](0,0,Subsuperscript[m, h, 2],mq^2,mq^2,mq^2)+\!\(
\*SubsuperscriptBox[\(m\), \(h\), \(2\)]\ \(\(TraditionalForm\`
\*SubscriptBox[\("C"\), \("0"\)]\)(TraditionalForm\`0, TraditionalForm\`0, TraditionalForm\`
\*SubsuperscriptBox[\(m\), \(h\), \(2\)], TraditionalForm\`
\*SuperscriptBox[\(mq\), \(2\)], TraditionalForm\`
\*SuperscriptBox[\(mq\), \(2\)], TraditionalForm\`
\*SuperscriptBox[\(mq\), \(2\)])\)\)+4 Subscript[B, 0](Subsuperscript[m, h, 2],mq^2,mq^2)-4 Subscript[B, 0](0,mq^2,mq^2)+2)+\!\(
\*SubsuperscriptBox[\(m\), \(h\), \(2\)]\ 
\*SuperscriptBox[\(g\), \(mu  nu\)]\ \((\((
\*SubsuperscriptBox[\(m\), \(h\), \(2\)] - 4\ 
\*SuperscriptBox[\(mq\), \(2\)])\)\ \(\(TraditionalForm\`
\*SubscriptBox[\("C"\), \("0"\)]\)(TraditionalForm\`0, TraditionalForm\`0, TraditionalForm\`
\*SubsuperscriptBox[\(m\), \(h\), \(2\)], TraditionalForm\`
\*SuperscriptBox[\(mq\), \(2\)], TraditionalForm\`
\*SuperscriptBox[\(mq\), \(2\)], TraditionalForm\`
\*SuperscriptBox[\(mq\), \(2\)])\) - 2)\)\)+2 p2^mu p1^nu ((4 mq^2-Subsuperscript[m, h, 2]) Subscript[C, 0](0,0,Subsuperscript[m, h, 2],mq^2,mq^2,mq^2)+2))
msq = 2 (amp (ComplexConjugate[amp] /. {mu -> rho, 
           nu -> sigma}) PolarizationSum[mu, rho, p1, 
         p2] PolarizationSum[nu, sigma, p2, p1] // Contract) /. 
    onshell /. Subscript[g, s] -> Sqrt[4 Pi Subscript[\[Alpha], s]] //
   Simplify
(4 mq^4 Subsuperscript[\[Alpha], s, 2] ((4 mq^2-Subsuperscript[m, h, 2]) Subscript[C, 0](0,0,Subsuperscript[m, h, 2],mq^2,mq^2,mq^2)+2)^2)/(\[Pi]^2 v^2)
\[CapitalGamma]HGG = 
 1/(2 8 Pi) 1/(2 Subscript[m, h]) msq /. 
  v -> Sqrt[Subscript[m, W]^2 SW^2/(Pi \[Alpha])]
(\[Alpha] mq^4 Subsuperscript[\[Alpha], s, 2] ((4 mq^2-Subsuperscript[m, h, 2]) Subscript[C, 0](0,0,Subsuperscript[m, h, 2],mq^2,mq^2,mq^2)+2)^2)/(8 \[Pi]^2 SW^2 Subscript[m, h] Subsuperscript[m, W, 2])
   On the other hand, we can check the result with the analytical side(for example, Peskin and Schroeder's Final Project 3) and a problem comes. In Peskin, a factor I_f(\tau_q) is defined. By the definition of I_f(\tau_q), it contains an extra factor"3" to make itself become 1 at the limit m_h->0. So that the amplitude squared should contain a factor 1/9.
   My problem is that I can't find such a factor 1/9 in the result got by FeynCalc. 
Best Regards, Thanks for the help!
Lingxiao Xu 
This archive was generated by hypermail 2b29 : 09/04/20-12:55:05 AM Z CEST