Name: Vladyslav Shtabovenko (email_not_shown)
Date: 08/03/14-10:01:55 PM Z


Hi,

if I enter

Tr1a = Tr[GS[P1].GS[P2].GS[P3].GA[i].(1 - GA[5])];
Tr2a = Tr[GS[Q1].GS[Q2].GS[Q3].GA[i].(1 - GA[5])];
Tr3a = Tr[
   GS[P1].GS[P2].GS[P3].GA[i].GS[Q1].GS[Q2].GS[Q3].GA[i].(1 - GA[5])];

then

Result = Simplify[Contract[Tr1a.Tr2a + 2 Tr3a]] // Schouten

indeed returns zero.

Cheers,
Vladyslav

Am 03.08.2014 20:38, schrieb Nikita Belyaev:
> Good day,
> I've tried to calculate some matrix elements and I've faced with a bug.
> As an example I can provide the following calculation.
> Here are the well-known formula to calculate some trace combinations (FeynCalc syntaxis):
>
> Tr1a = Tr[P1.P2.P3.GA[i].(1 - GA[5])];
> Tr2a = Tr[Q1.Q2.Q3.GA[i].(1 - GA[5])];
> Tr3a = Tr[P1.P2.P3.GA[i].Q1.Q2.Q3.GA[i].(1 - GA[5])];
>
> Result = FullSimplify[Contract[Tr1a.Tr2a + 2 Tr3a]];
>
> P1,...,Q1,... are dirac slashed values.
>
> Result should be zero, but in FeynCalc there is a bug with calculating of Tr[P1.P2.P3.GA[i].Q1.Q2.Q3.GA[i].GA[5]) term. The result contsins wrong imaginary combination of Levi-Civita symbols (there are 15 terms instead of 6), real part is zero.
> So what is the reason for that?
> I can provide any files you might need.
>
> P.S. FeynCalc 8.2.0, Mathematica 9
>



This archive was generated by hypermail 2b29 : 11/24/17-08:20:02 AM Z CET