Hi, Dr. Mertig: 
Thank you very much. Yes, It works. JP 
On 11/15/11 5:55 PM, Rolf Mertig wrote: 
> (* Using FeynCalc 8.0.3 with Mathematica 8 *) 
> (* the program below should print: 
> 
> ans = (4*C*(FV[k, mu]*FV[k, nu] - MT[mu, nu]*SP[k, k])*(6*m^2 - 6*A0[m^2] - SP[k, k] + 3*B0[SP[k, k], m^2, m^2]*(2*m^2 + SP[k, k])))/(9*SP[k, k]) 
> 
> and 
> 
> res3 = (2*C*(-(FV[k, mu]*FV[k, nu]) + MT[mu, nu]*SP[k, k])*(2*(-2 + D)*A0[m^2] - B0[SP[k, k], m^2, m^2]*(4*m^2 + (-2 + D)*SP[k, k])))/((-1 + D)*SP[k, k]) 
> 
> 
> *) 
> 
> Needs["HighEnergyPhysics`FeynCalc`"] 
> dm = GAD; ds = GS; mt = MT; fv = FV; 
> (*Now write the numerator of the Feynman diagram.We define the \ 
> constant C=alpha/(4 pi)*) 
> num = -C Tr[dm[mu].(ds[q] + m).dm[nu].(ds[q] + ds[k] + m)] ; 
> (* By default FeynCalc to evaluates the integral in D dimensions *) 
> (* By default it also takes the limit D -> 4 *) 
> $LimitTo4 = True; 
> 
> (*Define the amplitude*) 
> amp = num*FAD[{q, m}, {q + k, m}]; 
> (*Calculate the result*) 
> res = (-I/Pi^2) OneLoop[q, amp] // PaVeReduce; 
> ans = Simplify[res // FCE]; 
> Print["ans = ", ans // InputForm]; 
> (* this is more general (no limit is taken): *) 
> res2 = OneLoopSimplify[amp, q] // Factor1 
> $LimitTo4 = False; 
> res3 = (-I/Pi^2) OneLoop[q, res2] // FCE // Simplify 
> Print["res3 = ", res3 // InputForm] 
> 
-- HSU Jongping, Chancellor Professor and Chair Department of Physics Univ. of Massachusetts Dartmouth, North Dartmouth, MA 02747. FAX (508)999-9115 http://www.umassd.edu/engineering/phy/people/faculty/jhsu/
This archive was generated by hypermail 2b29 : 09/04/20-12:55:05 AM Z CEST