Even simpler:
INT[X_] := OneLoop[k, X, Dimension -> D, OneLoopSimplify -> False]
AMPLITUDE = (GSD[k] + GSD[p]) FAD[{k + p, mi}] FAD[{k, M}]
INT[AMPLITUDE] // PaVeReduce // Simplify
gives a similar result, with kslash+pslash....
(\[Pi] (\[Gamma]\[CenterDot]k+\[Gamma]\[CenterDot]p) ((M^2-mi^2) Subscript[B, 0](0,M^2,mi^2)-(M^2-mi^2+p^2) Subscript[B, 0](p^2,M^2,mi^2)))/(2 p^2)
Again, kslash does not appear if using Dimension->4. What is the real difference there? Finite parts in dimensional regularization? Or am I missing something?
Thanks, as usual, for your kind replies!
This archive was generated by hypermail 2b29 : 09/04/20-12:55:05 AM Z CEST