Name: Rolf Mertig (email_not_shown)
Date: 02/11/10-11:54:19 PM Z

Hello,

find below my quick attempt to get you going with the tensor integral.
You need to do the final integrals probably by partial fraction
decompoisition etc.
(I am using my development version of FeynCalc, but it will work with older versions the same way).

Regards,
-----
Rolf Mertig
GluonVision GmbH
Berlin, Germany
-----

In[1]:= !!tensorintegral.m
<<HighEnergyPhysics`FeynCalc` ;
Amp = FVD[q,mu] FVD[q,nu] FVD[q,al] FVD[q,be] FAD[{q,mD},{q,Lambda},
{q,Lambda}, {p3+q,m1},{q-p4,m2}];
Format[LineBreak[_]] := "";
Print["Amp = ", Amp];
test = Isolate[Factor1 @ Collect2[TID[Amp,q], q] // FCE, q, IsolateNames ->
T];
Print["\nafter tensor integral decomposition : "];
Block[{T}, Print @ InputForm @ ReleaseHold @ test];
Print["\nwhere the T[i] are functions of "];
Print @ Cases2[DownValues[T],{MTD,SPD,FVD}]

In[1]:= <<tensorintegral.m
FeynCalc 7.0.0 Type ?FeynCalc for help or visit http://www.feyncalc.org/
\$PrePrint is set to FeynCalcForm. Use FI and FC to change the display
format.
FeynArts 3.5 patched for use with FeynCalc
Amp = FAD[{q, mD}, {q, Lambda}, {q, Lambda}, {p3 + q, m1}, {-p4 + q, m2}]
FVD[q, al] FVD[q, be] FVD[q, mu] FVD[q, nu]

after tensor integral decomposition :
-((FAD[{q, Lambda}, {q, Lambda}, {q, mD}, {p3 + q, m1}, {-p4 + q, m2}]*
(-(SPD[p3, q]^4*T[2]^4*T[3]) - SPD[p3, q]^3*SPD[p4, q]*T[2]^4*T[4] +
SPD[p3, q]^2*SPD[p4, q]^2*T[2]^4*T[5] -
SPD[p3, q]*SPD[p4, q]^3*T[2]^4*T[6] + SPD[p4, q]^4*T[2]^4*T[7] +
SPD[p3, q]^2*SPD[q, q]*T[2]^5*T[8] -
SPD[p3, q]*SPD[p4, q]*SPD[q, q]*T[2]^5*T[9] +
SPD[p4, q]^2*SPD[q, q]*T[2]^5*T[10] + SPD[q, q]^2*T[2]^6*T[11]))/
(D*T[1]*T[2]^8))

where the T[i] are functions of
{FVD[p3, al], FVD[p3, be], FVD[p3, mu], FVD[p3, nu], FVD[p4, al],
FVD[p4, be], FVD[p4, mu], FVD[p4, nu], MTD[al, be], MTD[al, mu],
MTD[al, nu], MTD[be, mu], MTD[be, nu], MTD[mu, nu], SPD[p3, p3],
SPD[p3, p4], SPD[p4, p4]}

In[2]:= TimeUsed[]

Out[2]= 8.55

This archive was generated by hypermail 2b29 : 10/24/18-06:00:01 AM Z CEST