Task: calculate
with
S(k) = i/(kslash - m - bslash )
<< "HighEnergyPhysics`fc`"
FeynCalc 3.1.18 Evaluate ?FeynCalc for help or visit www.feyncalc.org
The denominator of the propagator S(k) is
sden = GS[k] - GS[b] . GA[5] - m
Ansatz for the inverse propagator (thanx to Rainer Scharf from Leipzig University)
invden = x[1]*GS[k] + x[2]*GS[b] + x[3]*GS[k] . GA[5] + x[4]*GS[b] . GA[5] + x[5]*GA[5] +
x[6]*GS[k] . GS[b] + x[7]*GS[k] . GS[b] . GA[5] - m
tmp = Select2[Collect2[DiracOrder[Calc[sden . invden]], DiracGamma], DiracGamma]
eqn = Union[(Select2[#1, x] & ) /@ List @@ Select2[tmp, DiracGamma]]
Length[eqn]
so = Map[Factor, Flatten[Solve[eqn == 0, Array[x, 7]]], {2}]
num = m^2 + ScalarProduct[b, b] - ScalarProduct[k, k]
NumProp = (num*#1 & ) /@ (invden /. so)
DenomProp = DiracOrder[Calc[sden . NumProp]]
Prop = NumProp/DenomProp
s[b_, k_] = I*FCE[Prop]
InputForm[s[b, k]]
(I*(2*m*GS[k] . GS[b] . GA[5] -
2*GS[k] . GA[5]*SP[b, k] -
2*m*GA[5]*SP[b, k] - 2*GS[b]*SP[b, k] -
m*(m^2 + SP[b, b] - SP[k, k]) +
GS[k]*(-m^2 + SP[b, b] + SP[k, k]) +
GS[b] . GA[5]*(m^2 + SP[b, b] +
SP[k, k])))/(m^4 + 2*m^2*SP[b, b] +
SP[b, b]^2 - 4*SP[b, k]^2 -
2*m^2*SP[k, k] + 2*SP[b, b]*SP[k, k] +
SP[k, k]^2)
![[Graphics:Images/vacuumse_gr_14.gif]](Images/vacuumse_gr_14.gif)
selfenergystart = Trick[GA[mu] . s[b, k + p] . GA[nu] . s[b, k]]
selfden = Factor[Denominator[selfenergystart]]
selfnum = Numerator[selfenergystart]
selfenergy = Collect2[Tr[selfnum], {mu,nu}]
result = FCE[selfenergy/selfden];
InputForm[result]
(-8*FV[b, nu]*FV[p, mu]*(2*m^2*SP[b, k] -
2*SP[b, b]*SP[b, k] - m^2*SP[b, p] -
SP[b, b]*SP[b, p] - 2*SP[b, k]*
SP[k, k] - SP[b, p]*SP[k, k] -
2*SP[b, k]*SP[k, p] - SP[b, k]*
SP[p, p]) - 8*FV[b, mu]*FV[p, nu]*
(2*m^2*SP[b, k] - 2*SP[b, b]*SP[b, k] -
m^2*SP[b, p] - SP[b, b]*SP[b, p] -
2*SP[b, k]*SP[k, k] - SP[b, p]*
SP[k, k] - 2*SP[b, k]*SP[k, p] -
SP[b, k]*SP[p, p]) - 16*FV[b, nu]*
FV[k, mu]*(2*m^2*SP[b, k] -
2*SP[b, b]*SP[b, k] + m^2*SP[b, p] -
SP[b, b]*SP[b, p] - 2*SP[b, k]*
SP[k, k] - SP[b, p]*SP[k, k] -
2*SP[b, k]*SP[k, p] - SP[b, k]*
SP[p, p]) - 16*FV[b, mu]*FV[k, nu]*
(2*m^2*SP[b, k] - 2*SP[b, b]*SP[b, k] +
m^2*SP[b, p] - SP[b, b]*SP[b, p] -
2*SP[b, k]*SP[k, k] - SP[b, p]*
SP[k, k] - 2*SP[b, k]*SP[k, p] -
SP[b, k]*SP[p, p]) - 8*FV[k, mu]*
FV[k, nu]*(m^4 - 6*m^2*SP[b, b] +
SP[b, b]^2 + 4*SP[b, k]^2 +
4*SP[b, k]*SP[b, p] - 2*m^2*SP[k, k] +
2*SP[b, b]*SP[k, k] + SP[k, k]^2 -
2*m^2*SP[k, p] + 2*SP[b, b]*SP[k, p] +
2*SP[k, k]*SP[k, p] - m^2*SP[p, p] +
SP[b, b]*SP[p, p] + SP[k, k]*SP[p, p]) -
4*FV[k, nu]*FV[p, mu]*
(m^4 - 6*m^2*SP[b, b] + SP[b, b]^2 +
4*SP[b, k]^2 + 4*SP[b, k]*SP[b, p] -
2*m^2*SP[k, k] + 2*SP[b, b]*SP[k, k] +
SP[k, k]^2 - 2*m^2*SP[k, p] +
2*SP[b, b]*SP[k, p] + 2*SP[k, k]*
SP[k, p] - m^2*SP[p, p] +
SP[b, b]*SP[p, p] + SP[k, k]*SP[p, p]) -
4*FV[k, mu]*FV[p, nu]*
(m^4 - 6*m^2*SP[b, b] + SP[b, b]^2 +
4*SP[b, k]^2 + 4*SP[b, k]*SP[b, p] -
2*m^2*SP[k, k] + 2*SP[b, b]*SP[k, k] +
SP[k, k]^2 - 2*m^2*SP[k, p] +
2*SP[b, b]*SP[k, p] + 2*SP[k, k]*
SP[k, p] - m^2*SP[p, p] +
SP[b, b]*SP[p, p] + SP[k, k]*SP[p, p]) -
8*FV[b, mu]*FV[b, nu]*
(m^4 + 2*m^2*SP[b, b] + SP[b, b]^2 +
4*SP[b, k]^2 + 4*SP[b, k]*SP[b, p] -
2*m^2*SP[k, k] + 2*SP[b, b]*SP[k, k] +
SP[k, k]^2 - 2*m^2*SP[k, p] +
2*SP[b, b]*SP[k, p] + 2*SP[k, k]*
SP[k, p] + m^2*SP[p, p] +
SP[b, b]*SP[p, p] + SP[k, k]*SP[p, p]) -
4*MT[mu, nu]*(m^6 + m^4*SP[b, b] -
m^2*SP[b, b]^2 - SP[b, b]^3 -
4*m^2*SP[b, k]^2 + 4*SP[b, b]*
SP[b, k]^2 - 4*m^2*SP[b, k]*SP[b, p] +
4*SP[b, b]*SP[b, k]*SP[b, p] +
2*m^2*SP[b, p]^2 + 2*SP[b, b]*
SP[b, p]^2 - 3*m^4*SP[k, k] +
2*m^2*SP[b, b]*SP[k, k] -
3*SP[b, b]^2*SP[k, k] + 4*SP[b, k]^2*
SP[k, k] + 4*SP[b, k]*SP[b, p]*
SP[k, k] + 2*SP[b, p]^2*SP[k, k] +
3*m^2*SP[k, k]^2 - 3*SP[b, b]*
SP[k, k]^2 - SP[k, k]^3 -
3*m^4*SP[k, p] + 2*m^2*SP[b, b]*
SP[k, p] - 3*SP[b, b]^2*SP[k, p] +
4*SP[b, k]^2*SP[k, p] + 6*m^2*SP[k, k]*
SP[k, p] - 6*SP[b, b]*SP[k, k]*
SP[k, p] - 3*SP[k, k]^2*SP[k, p] +
2*m^2*SP[k, p]^2 - 2*SP[b, b]*
SP[k, p]^2 - 2*SP[k, k]*SP[k, p]^2 -
m^4*SP[p, p] - 2*m^2*SP[b, b]*SP[p, p] -
SP[b, b]^2*SP[p, p] + 4*SP[b, k]^2*
SP[p, p] + 2*SP[b, k]*SP[b, p]*
SP[p, p] + 2*m^2*SP[k, k]*SP[p, p] -
2*SP[b, b]*SP[k, k]*SP[p, p] -
SP[k, k]^2*SP[p, p] + m^2*SP[k, p]*
SP[p, p] - SP[b, b]*SP[k, p]*SP[p, p] -
SP[k, k]*SP[k, p]*SP[p, p]) -
4*I*(3*m^4 + 2*m^2*SP[b, b] - SP[b, b]^2 -
4*SP[b, k]^2 - 4*SP[b, k]*SP[b, p] -
2*m^2*SP[k, k] - 2*SP[b, b]*SP[k, k] -
SP[k, k]^2 - 2*m^2*SP[k, p] -
2*SP[b, b]*SP[k, p] - 2*SP[k, k]*
SP[k, p] - m^2*SP[p, p] -
SP[b, b]*SP[p, p] - SP[k, k]*SP[p, p])*
LC[mu, nu][b, p] +
8*I*(2*m^2*SP[b, k] - 2*SP[b, b]*
SP[b, k] + m^2*SP[b, p] -
SP[b, b]*SP[b, p] - 2*SP[b, k]*
SP[k, k] - SP[b, p]*SP[k, k] -
2*SP[b, k]*SP[k, p] - SP[b, k]*SP[p, p])*
LC[mu, nu][k, p])/
((m^4 + 2*m^2*SP[b, b] + SP[b, b]^2 -
4*SP[b, k]^2 - 2*m^2*SP[k, k] +
2*SP[b, b]*SP[k, k] + SP[k, k]^2)*
(m^4 + 2*m^2*SP[b, b] + SP[b, b]^2 -
4*SP[b, k]^2 - 8*SP[b, k]*SP[b, p] -
4*SP[b, p]^2 - 2*m^2*SP[k, k] +
2*SP[b, b]*SP[k, k] + SP[k, k]^2 -
4*m^2*SP[k, p] + 4*SP[b, b]*SP[k, p] +
4*SP[k, k]*SP[k, p] + 4*SP[k, p]^2 -
2*m^2*SP[p, p] + 2*SP[b, b]*SP[p, p] +
2*SP[k, k]*SP[p, p] + 4*SP[k, p]*
SP[p, p] + SP[p, p]^2))
TimeUsed[]