![[Graphics:Images/qQ-VV_gr_6.gif]](Images/qQ-VV_gr_6.gif)
![[Graphics:Images/qQ-VV_gr_12.gif]](Images/qQ-VV_gr_12.gif)
![[Graphics:Images/qQ-VV_gr_13.gif]](Images/qQ-VV_gr_13.gif)
![[Graphics:Images/qQ-VV_gr_14.gif]](Images/qQ-VV_gr_14.gif)
![[Graphics:Images/qQ-VV_gr_15.gif]](Images/qQ-VV_gr_15.gif)
FeynCalc 3.0.1.3 For help do: ?FeynCalc
Copyright 1997 Mertig Research & Consulting (www.mertig.com)
Please click on the Cell menu, then go to the Default Output Format Type item and switch to TraditionalForm.
![[Graphics:Images/qQ-VV_gr_16.gif]](Images/qQ-VV_gr_16.gif)
![[Graphics:Images/qQ-VV_gr_17.gif]](Images/qQ-VV_gr_17.gif)
The three amplitude of ->
->
is:
![[Graphics:Images/qQ-VV_gr_24.gif]](Images/qQ-VV_gr_24.gif)
The momentum assignment is (as usual with FA): ->
->
.
We use 't Hooft-Feynman gauge.
![[Graphics:Images/qQ-VV_gr_29.gif]](Images/qQ-VV_gr_29.gif)
The Mandelstam variables are defined such that the fermion comes from the proton:
![[Graphics:Images/qQ-VV_gr_31.gif]](Images/qQ-VV_gr_31.gif)
The amplitude squared is:
![[Graphics:Images/qQ-VV_gr_32.gif]](Images/qQ-VV_gr_32.gif)
In the W CM frame:
![[Graphics:Images/qQ-VV_gr_34.gif]](Images/qQ-VV_gr_34.gif)
![[Graphics:Images/qQ-VV_gr_36.gif]](Images/qQ-VV_gr_36.gif)
![[Graphics:Images/qQ-VV_gr_38.gif]](Images/qQ-VV_gr_38.gif)
This agrees with my hand calculations (notes: Total Cross Section) and C.-P.'s notes (Zeroth Order) and with CompHEP.
The averaging factors: initial state color and spin
.
![[Graphics:Images/qQ-VV_gr_41.gif]](Images/qQ-VV_gr_41.gif)
Taking away the initial state color and spin
averaging factors and changing notation:
![[Graphics:Images/qQ-VV_gr_44.gif]](Images/qQ-VV_gr_44.gif)
![[Graphics:Images/qQ-VV_gr_46.gif]](Images/qQ-VV_gr_46.gif)
The three amplitude of ->
->
is:
![[Graphics:Images/qQ-VV_gr_54.gif]](Images/qQ-VV_gr_54.gif)
The momentum assignment is (as usual with FA): ->
->
.
We use 't Hooft-Feynman gauge.
![[Graphics:Images/qQ-VV_gr_59.gif]](Images/qQ-VV_gr_59.gif)
The Mandelstam variables are defined such that the fermion comes from the proton:
![[Graphics:Images/qQ-VV_gr_61.gif]](Images/qQ-VV_gr_61.gif)
The amplitude squared is:
![[Graphics:Images/qQ-VV_gr_62.gif]](Images/qQ-VV_gr_62.gif)
In the W CM frame:
![[Graphics:Images/qQ-VV_gr_64.gif]](Images/qQ-VV_gr_64.gif)
![[Graphics:Images/qQ-VV_gr_66.gif]](Images/qQ-VV_gr_66.gif)
The averaging factors: initial state color and spin
.
![[Graphics:Images/qQ-VV_gr_70.gif]](Images/qQ-VV_gr_70.gif)
Taking away the initial state color and spin
averaging factors and changing notation:
![[Graphics:Images/qQ-VV_gr_73.gif]](Images/qQ-VV_gr_73.gif)
![[Graphics:Images/qQ-VV_gr_74.gif]](Images/qQ-VV_gr_74.gif)
The three amplitude of ->
->
is (the
->
->
process was deleted by hand):
![[Graphics:Images/qQ-VV_gr_84.gif]](Images/qQ-VV_gr_84.gif)
The momentum assignment is (as usual with FA): ->
->
.
We use 't Hooft-Feynman gauge. We made tha quark charge explicit.
![[Graphics:Images/qQ-VV_gr_89.gif]](Images/qQ-VV_gr_89.gif)
The Mandelstam variables are defined in the standard way:
![[Graphics:Images/qQ-VV_gr_91.gif]](Images/qQ-VV_gr_91.gif)
The amplitude squared is:
![[Graphics:Images/qQ-VV_gr_92.gif]](Images/qQ-VV_gr_92.gif)
In the W CM frame:
![[Graphics:Images/qQ-VV_gr_94.gif]](Images/qQ-VV_gr_94.gif)
![[Graphics:Images/qQ-VV_gr_95.gif]](Images/qQ-VV_gr_95.gif)
![[Graphics:Images/qQ-VV_gr_96.gif]](Images/qQ-VV_gr_96.gif)
![[Graphics:Images/qQ-VV_gr_98.gif]](Images/qQ-VV_gr_98.gif)
This agrees with CompHEP.
The averaging factors: initial state color and spin
.
Summation over colors has not been done yet.
![[Graphics:Images/qQ-VV_gr_101.gif]](Images/qQ-VV_gr_101.gif)
Taking away the initial state color and spin
averaging factors, making the quark charge and the color sum explicit and changing notation:
![[Graphics:Images/qQ-VV_gr_104.gif]](Images/qQ-VV_gr_104.gif)
The three amplitude of -> γ γ is:
![[Graphics:Images/qQ-VV_gr_108.gif]](Images/qQ-VV_gr_108.gif)
The momentum assignment is (as usual with FA): ->
.
We use 't Hooft-Feynman gauge. The u quark charge is included by FA and taken made explicit.
![[Graphics:Images/qQ-VV_gr_113.gif]](Images/qQ-VV_gr_113.gif)
![[Graphics:Images/qQ-VV_gr_116.gif]](Images/qQ-VV_gr_116.gif)
![[Graphics:Images/qQ-VV_gr_117.gif]](Images/qQ-VV_gr_117.gif)
This must still be summed over .
In the γγ CM frame:
![[Graphics:Images/qQ-VV_gr_120.gif]](Images/qQ-VV_gr_120.gif)
![[Graphics:Images/qQ-VV_gr_121.gif]](Images/qQ-VV_gr_121.gif)
![[Graphics:Images/qQ-VV_gr_122.gif]](Images/qQ-VV_gr_122.gif)
![[Graphics:Images/qQ-VV_gr_124.gif]](Images/qQ-VV_gr_124.gif)
This agrees with both Ohnemus and Owens and CompHEP.
The averaging factors: initial state color and spin
and the identical final state particles factor
.
![[Graphics:Images/qQ-VV_gr_128.gif]](Images/qQ-VV_gr_128.gif)
To obtain the uanveraged amplitude square we take away the initial state color and spin
averaging factors and the identical final state particles factor
, make explicit the quark charges
and the sum over colors
), and change notation:
![[Graphics:Images/qQ-VV_gr_134.gif]](Images/qQ-VV_gr_134.gif)
This agrees with both Ohnemus and Owens and FC.
In Papageno the following is coded:
CONST=AEM**2*16.*PISQ
CONST1=QU4
CONST2=QD4
....
A4=CONST*2.*(U2+T2)/U/T/3.
A5=CONST*AL**2*11.**2/9**2.*2./4./8./8.*XMAT_PHOT(S,T,U)
WT=((SF(23)+SF(24))*CONST1+(SF(27)+SF(28))*CONST2)*A4/2.
1 +SF(9)*A5/2./16./PISQ
That is
![[Graphics:Images/qQ-VV_gr_136.gif]](Images/qQ-VV_gr_136.gif)
After taking out the initial state color and spin
averaging factors and the identical final state particles factor
, and making the color sum explicit, for the amplitude square (before averaging) we obtain:
![[Graphics:Images/qQ-VV_gr_140.gif]](Images/qQ-VV_gr_140.gif)
which agrees with both FC and CompHEP.
On page 56 they have
![[Graphics:Images/qQ-VV_gr_142.gif]](Images/qQ-VV_gr_142.gif)
After taking out the initial state color and spin
averaging factors and the identical final state particles factor
, and making the color sum explicit, for the amplitude square (before averaging) we obtain:
![[Graphics:Images/qQ-VV_gr_146.gif]](Images/qQ-VV_gr_146.gif)
There's a factor which I don't understand.
The box contribution to the amplitude of
-> γ γ is:
![[Graphics:Images/qQ-VV_gr_151.gif]](Images/qQ-VV_gr_151.gif)
The triangular contribution to the amplitude of
-> γ γ is:
![[Graphics:Images/qQ-VV_gr_157.gif]](Images/qQ-VV_gr_157.gif)
For all of the above diagrams:
- each diagram comes with a factor of 2, since the quark can run either in one or in the other direction in the loop,
- all six flavors can run around the loop.
We want to find out the normalization of the g g -> γ γ process with respect to the q -> γ γ process from Papageno.
In Papageno the following is coded:
CONST=AEM**2*16.*PISQ
CONST1=QU4
CONST2=QD4
....
A4=CONST*2.*(U2+T2)/U/T/3.
A5=CONST*AL**2*11.**2/9**2.*2./4./8./8.*XMAT_PHOT(S,T,U)
WT=((SF(23)+SF(24))*CONST1+(SF(27)+SF(28))*CONST2)*A4/2.
1 +SF(9)*A5/2./16./PISQ
That is
![[Graphics:Images/qQ-VV_gr_160.gif]](Images/qQ-VV_gr_160.gif)
After taking out the initial state color and spin
averaging factors and the identical final state particles factor
, the factor
(without the top quark) and making the factor from the color sum/traces
explicit we obtain:
![[Graphics:Images/qQ-VV_gr_166.gif]](Images/qQ-VV_gr_166.gif)
The factor (without and with the top quark) is
![[Graphics:Images/qQ-VV_gr_169.gif]](Images/qQ-VV_gr_169.gif)
In RES.FOR:
- For H production we have:
![[Graphics:Images/qQ-VV_gr_172.gif]](Images/qQ-VV_gr_172.gif)
- For γγ production we have:
![[Graphics:Images/qQ-VV_gr_174.gif]](Images/qQ-VV_gr_174.gif)
In ResBos we have:
C Identical particle final state and spin average factors
& 1.d0/2.d0/2.d0/2.d0*
C Effective matrix element
& 2.d0*(gWeak*sWeak)**4/(16.0*Pi**2)*
CsB t and b quark masses are non-zero in loop:
& GGAA(sH,tH,uH)*(SigS+SigY(0))
The three amplitude of -> Z Z is:
![[Graphics:Images/qQ-VV_gr_177.gif]](Images/qQ-VV_gr_177.gif)
The momentum assignment is (as usual with FA): ->
.
We use 't Hooft-Feynman gauge. The u quark charge is included by FA and taken made explicit.
![[Graphics:Images/qQ-VV_gr_182.gif]](Images/qQ-VV_gr_182.gif)
![[Graphics:Images/qQ-VV_gr_185.gif]](Images/qQ-VV_gr_185.gif)
![[Graphics:Images/qQ-VV_gr_186.gif]](Images/qQ-VV_gr_186.gif)
![[Graphics:Images/qQ-VV_gr_188.gif]](Images/qQ-VV_gr_188.gif)
This must still be summed over .
In the γγ CM frame:
![[Graphics:Images/qQ-VV_gr_191.gif]](Images/qQ-VV_gr_191.gif)
![[Graphics:Images/qQ-VV_gr_192.gif]](Images/qQ-VV_gr_192.gif)
![[Graphics:Images/qQ-VV_gr_193.gif]](Images/qQ-VV_gr_193.gif)
![[Graphics:Images/qQ-VV_gr_195.gif]](Images/qQ-VV_gr_195.gif)
This agrees with both Ohnemus and Owens and CompHEP.
The averaging factors: initial state color and spin
and the identical final state particles factor
.
![[Graphics:Images/qQ-VV_gr_199.gif]](Images/qQ-VV_gr_199.gif)
We make the initial state color and spin
averaging factors and the identical final state particles factor
, and the sum over colors
) explicit ((the quark charges
)), and change notation:
![[Graphics:Images/qQ-VV_gr_205.gif]](Images/qQ-VV_gr_205.gif)
![[Graphics:Images/qQ-VV_gr_207.gif]](Images/qQ-VV_gr_207.gif)
This agrees with Ohnemus and Owens.
Notes:
![[Graphics:Images/qQ-VV_gr_209.gif]](Images/qQ-VV_gr_209.gif)
Compared to the process, in the amplitude square of
there's an extra factor:
![[Graphics:Images/qQ-VV_gr_214.gif]](Images/qQ-VV_gr_214.gif)
This means: to obtain the resummation formula for from the resummation formula for
we have to inclue an extra numerical factor, include extra quark charges
, and include an extra factor of
.
An extra numerical factor comes from the identical particle final state, which means that the overall extra factor (for
compared to
) is 2.
(Note that the initial state is the same, which means that the color and spin
averaging factors are the same for both process.)
In RES.FOR:
- the quark charges are adjusted.
In ResBos:
- for γγ: |
![]() ![]() ![]() ![]() |
|
- for ![]() |
![]() |
is programmed. |
Compared to the symmetric part of the process in the amplitude square of
there's an extra factor:
![[Graphics:Images/qQ-VV_gr_234.gif]](Images/qQ-VV_gr_234.gif)
This means: to obtain the resummation formula for from the resummation formula for
we have to set
->
, inclue an extra numerical factor, get rid of the W propagator, include the quark charges, replace
with
, and include an extra factor of
.
Extra numerical factor coming in from the different averaging:
![[Graphics:Images/qQ-VV_gr_243.gif]](Images/qQ-VV_gr_243.gif)
The numerical factors combined give an overall extra factor of:
![[Graphics:Images/qQ-VV_gr_245.gif]](Images/qQ-VV_gr_245.gif)
Based on Papageno the ratio of the weights of the g g -> γ γ and q -> γ γ processes is:
![[Graphics:Images/qQ-VV_gr_248.gif]](Images/qQ-VV_gr_248.gif)
From here we see the differences:
- the (unaveraged, un-color-summed) amplitude square (not including the couplings or quark charges),
- the initial color averaging factors,
- the color factors,
- the couplings.
The factor is:
![[Graphics:Images/qQ-VV_gr_251.gif]](Images/qQ-VV_gr_251.gif)
The factor then should be:
![[Graphics:Images/qQ-VV_gr_253.gif]](Images/qQ-VV_gr_253.gif)
The three amplitude of -> Z Z is:
![[Graphics:Images/qQ-VV_gr_257.gif]](Images/qQ-VV_gr_257.gif)
The momentum assignment is (as usual with FA): ->
.
We use 't Hooft-Feynman gauge.
![[Graphics:Images/qQ-VV_gr_262.gif]](Images/qQ-VV_gr_262.gif)
For simplicity we neglect the Z mass
![[Graphics:Images/qQ-VV_gr_265.gif]](Images/qQ-VV_gr_265.gif)
![[Graphics:Images/qQ-VV_gr_267.gif]](Images/qQ-VV_gr_267.gif)
This must be summed over .
Ohnemus and Owens (PRD43,3626(1991)) has in Eq.(4) (for f = u and after taking )
![[Graphics:Images/qQ-VV_gr_271.gif]](Images/qQ-VV_gr_271.gif)