(*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 4.0, MathReader 4.0, or any compatible application. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 51689, 1305]*) (*NotebookOutlinePosition[ 52517, 1335]*) (* CellTagsIndexPosition[ 52431, 1329]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["Twist2QuarkOperator", "Subsection", CellTags->"Twist2QuarkOperator"], Cell[CellGroupData[{ Cell["Description", "Subsubsection"], Cell["\<\ Twist2QuarkOperator[p] or Twist2QuarkOperator[p,_,_] yields the \ quark-antiquark operator (p is momentum in the direction of the incoming \ quark). Twist2QuarkOperator[{p,q}] yields the 2-quark operator for non-zero \ momentum insertion (p is momentum in the direction of the incoming quark). \ Twist2QuarkOperator[{p1,___}, {p2,___}, {p3, mu, a}] or \ Twist2QuarkOperator[p1,_,_, p2,_,_, p3,mu,a] is the quark-antiquark-gluon \ operator, where p1 is the incoming quark, p2 the incoming antiquark and p3 \ denotes the incoming gluon momentum. Twist2QuarkOperator[{p1}, {p2}, {p3, mu, \ a}, {p4, nu, b}] or Twist2QuarkOperator[{p1,___}, {p2,___}, {p3, mu, a}, {p4, \ nu, b}] or Twist2QuarkOperator[p1,_,_, p2,_,_, p3,mu,a, p4, nu, b] gives the \ Quark-Quark-Gluon-Gluon-operator. The setting of the option Polarization \ (unpolarized: 0; polarized: 1) determines whether the unpolarized or \ polarized operator is returned\ \>", "Text"], Cell[TextData[{ "See also: ", " ", ButtonBox["Twist2GluonOperator", ButtonData:>"Twist2GluonOperator", ButtonStyle->"Hyperlink", ButtonNote->"Twist2GluonOperator"], "." }], "Text"] }, Open ]], Cell["Examples", "Subsubsection"], Cell[CellGroupData[{ Cell["Polarized case, zero-momentum insertion", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(SetOptions[Twist2QuarkOperator, Polarization \[Rule] 1, ZeroMomentumInsertion \[Rule] True]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{CouplingConstant \[Rule] g\_s, Dimension \[Rule] D, Explicit \[Rule] True, Polarization \[Rule] 1, ZeroMomentumInsertion \[Rule] True}\)], "Output"] }, Open ]], Cell["Quark-antiquark operator.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t1 = Twist2QuarkOperator[p]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}], ".", \(\[Gamma]\^5\)}]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}], \(m - 1\)]}], TraditionalForm]], "Output"] }, Open ]], Cell["Quark-antiquark-gluon operator.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t2 = Twist2QuarkOperator[{p}, {q}, {k, \[Mu], a}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(-g\_s\), " ", RowBox[{ RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}], ".", \(\[Gamma]\^5\), ".", SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]]}], " ", RowBox[{"(", FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(i = 0\)\%\(m - 2\)\), RowBox[{\(\((\(-1\))\)\^i\), " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}], \(\(-i\) + m - 2\)], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], ")"}], "i"]}]}], HoldForm], "TraditionalForm"], ")"}], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"]]}], TraditionalForm]], "Output"] }, Open ]], Cell["Quark-antiquark-gluon-gluon operator.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t3 = Twist2QuarkOperator[{p}, {q}, {k, \[Mu], a}, {r, \[Nu], b}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(-g\_s\%2\), " ", RowBox[{ RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}], ".", \(\[Gamma]\^5\), ".", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["T", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"]], ".", SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]]}], " ", RowBox[{"(", RowBox[{ FormBox[ TagBox[\(\[Sum]\+\(j = 0\)\%\(m - 3\)\*"\<\"\"\>"\), HoldForm], "TraditionalForm"], "\[NoBreak]", FormBox[\(\[Sum]\+\(i = 0\)\%j\*"\<\"\"\>"\), "TraditionalForm"], "\[NoBreak]", FormBox[ RowBox[{\(\((\(-1\))\)\^j\), " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}], "i"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], ")"}], \(\(-j\) + m - 3\)], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["r", "TraditionalForm"]}]}], ")"}], \(j - i\)]}], "TraditionalForm"]}], ")"}]}], "-", RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{ SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]], ".", SubscriptBox["T", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"]]}], " ", RowBox[{"(", RowBox[{ FormBox[ TagBox[\(\[Sum]\+\(j = 0\)\%\(m - 3\)\*"\<\"\"\>"\), HoldForm], "TraditionalForm"], "\[NoBreak]", FormBox[\(\[Sum]\+\(i = 0\)\%j\*"\<\"\"\>"\), "TraditionalForm"], "\[NoBreak]", FormBox[ RowBox[{\(\((\(-1\))\)\^j\), " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}], \(\(-j\) + m - 3\)], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], ")"}], "i"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["r", "TraditionalForm"]}]}], ")"}], \(j - i\)]}], "TraditionalForm"]}], ")"}]}]}], ")"}]}], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"]], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Nu]", "TraditionalForm"], "TraditionalForm"]]}], TraditionalForm]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Unpolarized case, zero-momentum insertion", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(SetOptions[Twist2QuarkOperator, \ Polarization -> 0, ZeroMomentumInsertion -> True]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{CouplingConstant \[Rule] g\_s, Dimension \[Rule] D, Explicit \[Rule] True, Polarization \[Rule] 0, ZeroMomentumInsertion \[Rule] True}\)], "Output"] }, Open ]], Cell["Quark-antiquark operator.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t4 = Twist2QuarkOperator[p]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}], \(m - 1\)]}], TraditionalForm]], "Output"] }, Open ]], Cell["Quark-antiquark-gluon operator.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t5 = Twist2QuarkOperator[{p}, {q}, {k, \[Mu], a}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(g\_s\), " ", RowBox[{ RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}], ".", SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]]}], " ", RowBox[{"(", FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(i = 0\)\%\(m - 2\)\), RowBox[{\(\((\(-1\))\)\^i\), " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}], \(\(-i\) + m - 2\)], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], ")"}], "i"]}]}], HoldForm], "TraditionalForm"], ")"}], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"]]}], TraditionalForm]], "Output"] }, Open ]], Cell["Quark-antiquark-gluon-gluon operator.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t6 = Twist2QuarkOperator[{p}, {q}, {k, \[Mu], a}, {r, \[Nu], b}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(-\((\(-1\))\)\^m\), " ", \(g\_s\%2\), " ", RowBox[{ RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}], ".", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]], ".", SubscriptBox["T", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"]]}], " ", RowBox[{"(", RowBox[{ FormBox[ TagBox[\(\[Sum]\+\(i = 0\)\%\(m - 3\)\*"\<\"\"\>"\), HoldForm], "TraditionalForm"], "\[NoBreak]", FormBox[\(\[Sum]\+\(j = 0\)\%i\*"\<\"\"\>"\), "TraditionalForm"], "\[NoBreak]", FormBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"-", RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}]}], ")"}], \(\(-i\) + m - 3\)], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], ")"}], "j"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], \(i - j\)]}], "TraditionalForm"]}], ")"}]}], "+", RowBox[{ RowBox[{ SubscriptBox["T", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"]], ".", SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]]}], " ", RowBox[{"(", RowBox[{ FormBox[ TagBox[\(\[Sum]\+\(i = 0\)\%\(m - 3\)\*"\<\"\"\>"\), HoldForm], "TraditionalForm"], "\[NoBreak]", FormBox[\(\[Sum]\+\(j = 0\)\%i\*"\<\"\"\>"\), "TraditionalForm"], "\[NoBreak]", FormBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"-", RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}]}], ")"}], \(\(-i\) + m - 3\)], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], ")"}], "j"], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["r", "TraditionalForm"]}]}], ")"}], \(i - j\)]}], "TraditionalForm"]}], ")"}]}]}], ")"}]}], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"]], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Nu]", "TraditionalForm"], "TraditionalForm"]]}], TraditionalForm]], "Output"] }, Open ]], Cell["This shows the FeynCalcExternal (FCE) form.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Twist2QuarkOperator[p] // FCE\) // StandardForm\)], "Input"], Cell[BoxData[ \(GSD[OPEDelta]\ SOD[p]\^\(\(-1\) + OPEm\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Twist2QuarkOperator[{p}, {q}, {k, \[Mu], a}, Explicit \[Rule] All, Polarization \[Rule] 0]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(-g\_s\), " ", RowBox[{ RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}], ".", SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]]}], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"]], " ", RowBox[{"(", RowBox[{ FractionBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}], \(m - 1\)], RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}]], "+", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], ")"}], \(m - 1\)]}], RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}]]}], ")"}]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Twist2QuarkOperator[{p}, {q}, {k, \[Mu], a}, {r, \[Nu], b}, Explicit \[Rule] All, Polarization \[Rule] 0]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(-g\_s\%2\), " ", RowBox[{ RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}], ".", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]], ".", SubscriptBox["T", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"]]}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ FormBox[\(\((\(-1\))\)\^m\), "TraditionalForm"], " ", FormBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}], \(m - 1\)], "TraditionalForm"]}], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}]}]]}], "-", FractionBox[ FormBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], ")"}], \(m - 1\)], "TraditionalForm"], RowBox[{ RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], " ", RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}]}]], "+", FractionBox[ FormBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], \(m - 1\)], "TraditionalForm"], RowBox[{ RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], " ", RowBox[{"(", RowBox[{ RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}]}]]}], ")"}]}], "+", RowBox[{ RowBox[{ SubscriptBox["T", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"]], ".", SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]]}], " ", RowBox[{"(", RowBox[{ RowBox[{"-", FractionBox[ RowBox[{ FormBox[\(\((\(-1\))\)\^m\), "TraditionalForm"], " ", FormBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], ")"}], \(m - 1\)], "TraditionalForm"]}], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], " ", RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["r", "TraditionalForm"]}]}], ")"}]}]]}], "-", FractionBox[ FormBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], ")"}], \(m - 1\)], "TraditionalForm"], RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], " ", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["r", "TraditionalForm"]}]}]], "+", FractionBox[ FormBox[ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["r", "TraditionalForm"]}]}], ")"}], \(m - 1\)], "TraditionalForm"], RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["r", "TraditionalForm"]}], " ", RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["r", "TraditionalForm"]}]}], ")"}]}]]}], ")"}]}]}], ")"}]}], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"]], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Nu]", "TraditionalForm"], "TraditionalForm"]], " ", FormBox[\(\((\(-1\))\)\^m\), "TraditionalForm"]}], TraditionalForm]], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Polarized case, non-zero momentum insertion", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(SetOptions[Twist2QuarkOperator, Polarization \[Rule] 1, ZeroMomentumInsertion \[Rule] False]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{CouplingConstant \[Rule] g\_s, Dimension \[Rule] D, Explicit \[Rule] True, Polarization \[Rule] 1, ZeroMomentumInsertion \[Rule] False}\)], "Output"] }, Open ]], Cell["\<\ With the setting ZeroMomentumInsertion \[Rule] False a non-zero \ momentum is assumed to flow into the operator vertex. \ \>", "Text"], Cell["\<\ This is the Feynman rule associated with the quark-antiquark \ operator, where p is the momentum of the incoming quark and q the momentum of \ the antiquark. The momentum flowing into the operator vertex is thus \ -p-q.\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t1 = Twist2QuarkOperator[{p, q}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(2\^\(1 - m\)\), " ", RowBox[{\(\[Gamma]\^5\), ".", RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "-", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], \(m - 1\)]}], TraditionalForm]], "Output"] }, Open ]], Cell["This is the quark-antiquark-gluon operator vertex.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t2 = Twist2QuarkOperator[{p}, {q}, {k, \[Mu], a}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(2\^\(2 - m\)\), " ", \(g\_s\), " ", RowBox[{ SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]], ".", \(\[Gamma]\^5\), ".", RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}]}], " ", RowBox[{"(", FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(i = 0\)\%\(m - 2\)\), RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "-", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], \(\(-i\) + m - 2\)], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "-", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], "i"]}]}], HoldForm], "TraditionalForm"], ")"}], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"]]}], TraditionalForm]], "Output"] }, Open ]], Cell["This shows the FeynCalcExternal form.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(StandardForm[FCE[t2]]\)], "Input"], Cell[BoxData[ \(2\^\(2 - OPEm\)\ Gstrong\ SUNT[a] . GA[5] . GSD[OPEDelta]\ FVD[ OPEDelta, \[Mu]]\ OPESum[\((\(-SOD[k]\) + SOD[p] - \ SOD[q])\)\^\(\(-2\) - OPEi + OPEm\)\ \((SOD[k] + SOD[p] - SOD[q])\)\^OPEi, \ {OPEi, 0, \(-2\) + OPEm}]\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Unpolarized case, non-zero momentum insertion", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(SetOptions[Twist2QuarkOperator, Polarization \[Rule] 1, ZeroMomentumInsertion \[Rule] False]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{CouplingConstant \[Rule] g\_s, Dimension \[Rule] D, Explicit \[Rule] True, Polarization \[Rule] 1, ZeroMomentumInsertion \[Rule] False}\)], "Output"] }, Open ]], Cell["Quark-antiquark operator.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t4 = Twist2QuarkOperator[{p, q}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(2\^\(1 - m\)\), " ", RowBox[{\(\[Gamma]\^5\), ".", RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}]}], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "-", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], \(m - 1\)]}], TraditionalForm]], "Output"] }, Open ]], Cell["Quark-antiquark-gluon operator.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t5 = Twist2QuarkOperator[{p}, {q}, {k, \[Mu], a}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(2\^\(2 - m\)\), " ", \(g\_s\), " ", RowBox[{ SubscriptBox["T", FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"]], ".", \(\[Gamma]\^5\), ".", RowBox[{"(", RowBox[{ FormBox["\<\"\[Gamma]\"\>", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}]}], " ", RowBox[{"(", FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(i = 0\)\%\(m - 2\)\), RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], ")"}]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "-", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], \(\(-i\) + m - 2\)], " ", SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{ FormBox["k", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["\[CapitalDelta]", "TraditionalForm"]}], "+", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["p", "TraditionalForm"]}], "-", RowBox[{ FormBox["\[CapitalDelta]", "TraditionalForm"], "\[NoBreak]", "\[CenterDot]", "\[NoBreak]", FormBox["q", "TraditionalForm"]}]}], ")"}], "i"]}]}], HoldForm], "TraditionalForm"], ")"}], " ", SuperscriptBox[ FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"]]}], TraditionalForm]], "Output"] }, Open ]], Cell[BoxData[ \(Clear[t1, t2, t3, t4, t5, t6]; \)], "Input"] }, Open ]] }, Open ]] }, FrontEndVersion->"4.0 for X", ScreenRectangle->{{0, 1024}, {0, 768}}, WindowSize->{520, 485}, WindowMargins->{{Automatic, 244}, {114, Automatic}}, StyleDefinitions -> "Demo.nb" ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{ "Twist2QuarkOperator"->{ Cell[1739, 51, 76, 1, 40, "Subsection", CellTags->"Twist2QuarkOperator"]} } *) (*CellTagsIndex CellTagsIndex->{ {"Twist2QuarkOperator", 52321, 1322} } *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1739, 51, 76, 1, 40, "Subsection", CellTags->"Twist2QuarkOperator"], Cell[CellGroupData[{ Cell[1840, 56, 36, 0, 36, "Subsubsection"], Cell[1879, 58, 946, 14, 197, "Text"], Cell[2828, 74, 200, 8, 29, "Text"] }, Open ]], Cell[3043, 85, 33, 0, 36, "Subsubsection"], Cell[CellGroupData[{ Cell[3101, 89, 64, 0, 36, "Subsubsection"], Cell[CellGroupData[{ Cell[3190, 93, 131, 2, 47, "Input"], Cell[3324, 97, 200, 3, 65, "Output"] }, Open ]], Cell[3539, 103, 41, 0, 70, "Text"], Cell[CellGroupData[{ Cell[3605, 107, 60, 1, 70, "Input"], Cell[3668, 110, 734, 21, 70, "Output"] }, Open ]], Cell[4417, 134, 47, 0, 70, "Text"], Cell[CellGroupData[{ Cell[4489, 138, 82, 1, 70, "Input"], Cell[4574, 141, 1778, 46, 70, "Output"] }, Open ]], Cell[6367, 190, 53, 0, 70, "Text"], Cell[CellGroupData[{ Cell[6445, 194, 104, 2, 70, "Input"], Cell[6552, 198, 6251, 138, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[12852, 342, 66, 0, 70, "Subsubsection"], Cell[CellGroupData[{ Cell[12943, 346, 123, 2, 70, "Input"], Cell[13069, 350, 200, 3, 70, "Output"] }, Open ]], Cell[13284, 356, 41, 0, 70, "Text"], Cell[CellGroupData[{ Cell[13350, 360, 60, 1, 70, "Input"], Cell[13413, 363, 578, 16, 70, "Output"] }, Open ]], Cell[14006, 382, 47, 0, 70, "Text"], Cell[CellGroupData[{ Cell[14078, 386, 82, 1, 70, "Input"], Cell[14163, 389, 1755, 46, 70, "Output"] }, Open ]], Cell[15933, 438, 53, 0, 70, "Text"], Cell[CellGroupData[{ Cell[16011, 442, 104, 2, 70, "Input"], Cell[16118, 446, 6415, 142, 70, "Output"] }, Open ]], Cell[22548, 591, 59, 0, 70, "Text"], Cell[CellGroupData[{ Cell[22632, 595, 82, 1, 70, "Input"], Cell[22717, 598, 74, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22828, 604, 130, 2, 70, "Input"], Cell[22961, 608, 2661, 70, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25659, 683, 145, 2, 70, "Input"], Cell[25807, 687, 15062, 312, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[40918, 1005, 68, 0, 70, "Subsubsection"], Cell[CellGroupData[{ Cell[41011, 1009, 132, 2, 70, "Input"], Cell[41146, 1013, 201, 3, 70, "Output"] }, Open ]], Cell[41362, 1019, 144, 3, 70, "Text"], Cell[41509, 1024, 243, 5, 70, "Text"], Cell[CellGroupData[{ Cell[41777, 1033, 65, 1, 70, "Input"], Cell[41845, 1036, 984, 26, 70, "Output"] }, Open ]], Cell[42844, 1065, 66, 0, 70, "Text"], Cell[CellGroupData[{ Cell[42935, 1069, 82, 1, 70, "Input"], Cell[43020, 1072, 3183, 74, 70, "Output"] }, Open ]], Cell[46218, 1149, 53, 0, 70, "Text"], Cell[CellGroupData[{ Cell[46296, 1153, 54, 1, 70, "Input"], Cell[46353, 1156, 261, 4, 70, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[46663, 1166, 70, 0, 70, "Subsubsection"], Cell[CellGroupData[{ Cell[46758, 1170, 132, 2, 70, "Input"], Cell[46893, 1174, 201, 3, 70, "Output"] }, Open ]], Cell[47109, 1180, 41, 0, 70, "Text"], Cell[CellGroupData[{ Cell[47175, 1184, 65, 1, 70, "Input"], Cell[47243, 1187, 984, 26, 70, "Output"] }, Open ]], Cell[48242, 1216, 47, 0, 70, "Text"], Cell[CellGroupData[{ Cell[48314, 1220, 82, 1, 70, "Input"], Cell[48399, 1223, 3183, 74, 70, "Output"] }, Open ]], Cell[51597, 1300, 64, 1, 70, "Input"] }, Open ]] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)