Twist2GluonOperator

Description

Twist2GluonOperator[{p, mu, a}, {nu, b}] or Twist2GluonOperator[p, {mu, a}, {nu, b}] or Twist2GluonOperator[p, mu,a, nu,b] yields the 2-gluon operator (p is ingoing momentum corresponding to Lorentz index mu). Twist2GluonOperator[{p,mu,a}, {q,nu,b}, {k,la,c}] or Twist2GluonOperator[ p,mu,a , q,nu,b , k,la,c ] gives the 3-gluon operator. Twist2GluonOperator[{p,mu,a}, {q,nu,b}, {k,la,c}, {s,si,d}] or Twist2GluonOperator[p,mu,a , q,nu,b , k,la,c , s,si,d] yields the 4-Gluon operator. The dimension is determined by the option and Dimension. The setting of the option Polarization (unpolarized: 0; polarized: 1) determines whether the unpolarized or polarized feynman rule is returned. With the setting Explicit to False the color-structure and the (1+(-1)^OPEm) (for polarized: (1-(-1)^OPEm)) is extracted and the color indices are omitted in the arguments of Twist2GluonOperator.

2-gluon legs

3-gluon legs

4-gluon legs

Unpolarized case, zero-momentum insertion

2-gluon legs

3-gluon legs

4-gluon legs

The setting All for Explicit performs the sums.

2-gluon legs

3-gluon legs

4-gluon legs

Unpolarized case, non-zero-momentum insertion

2-gluon legs

3-gluon legs

4-gluon legs

Suppress the lengthy output.

The setting Explicit -> All performs the sums.

Converted from the Mathematica notebook Twist2GluonOperator.nb