Series2 performs a series expansion around 0. Series2 is (up to the Gamma - bug) equivalent to Series, except that it applies Normal on the result and has an option FinalSubstitutions. Series2[f, e, n] is equivalent to Series2[f, {e, 0, n}].
![[Graphics:Images/index_gr_1.gif]](Images/index_gr_1.gif)
![[Graphics:Images/index_gr_3.gif]](Images/index_gr_3.gif)
![[Graphics:Images/index_gr_5.gif]](Images/index_gr_5.gif)
![[Graphics:Images/index_gr_7.gif]](Images/index_gr_7.gif)
![[Graphics:Images/index_gr_9.gif]](Images/index_gr_9.gif)
![[Graphics:Images/index_gr_11.gif]](Images/index_gr_11.gif)
![[Graphics:Images/index_gr_13.gif]](Images/index_gr_13.gif)
There is a table of expansions of special hypergeometric functions.
![[Graphics:Images/index_gr_15.gif]](Images/index_gr_15.gif)
![[Graphics:Images/index_gr_17.gif]](Images/index_gr_17.gif)
![[Graphics:Images/index_gr_19.gif]](Images/index_gr_19.gif)
![[Graphics:Images/index_gr_21.gif]](Images/index_gr_21.gif)
There are over 100 more special expansions of tabulated in Series2.m. The interested user can consult the source code (search for HYPERLIST).
The FeynCalc Book | ![]() | ![]() |