Documentation unfinished ....; see also the old FeynCalc documentation at http://www.mertig.com/oldfc. NOTICE: While OneLoop is restricted to 't Hooft Feynman gauge the function OneLoopSimplify does not have this restriction (but is usually slower). OneLoop handles selfenergies, vertex and box-graphs (those only up to 3rd rank tensor in the integration variable).
WARNING: If you encounter anomalies:
is calculated in D dimensions has changed compared to the old FeynCalc version. Please keep in mind that the issue of
schemes is inherintly tricky.
OneLoop[q, amplitude] calculates the one-loop Feynman diagram amplitude (n-point, where n<=4 and the highest tensor rank of the integration momenta (after cancellation of scalar products) may be 3; unless OneLoopSimplify is used).
The argument q denotes the integration variable, i.e., the loop momentum. OneLoop[name, q, amplitude] has as first argument a name of the amplitude. If the second argument has head FeynAmp then OneLoop[q, FeynAmp[name, k, expr]] and OneLoop[FeynAmp[name, k, expr]] tranform to OneLoop[name, k, expr].
![[Graphics:Images/index_gr_3.gif]](Images/index_gr_3.gif)
See also: B0, C0, D0, OneLoopSimplify, TID, TIDL.
![[Graphics:Images/index_gr_5.gif]](Images/index_gr_5.gif)
![[Graphics:Images/index_gr_7.gif]](Images/index_gr_7.gif)
![[Graphics:Images/index_gr_9.gif]](Images/index_gr_9.gif)
Remember that FAD[{q,mf},{q-k,mf}] is a fast possibility to enter
![[Graphics:Images/index_gr_11.gif]](Images/index_gr_11.gif)
The input to OneLoop may be in 4 dimensions, since the function changes the dimension of the objects automatically to the setting of the Dimension option (D by default).
![[Graphics:Images/index_gr_13.gif]](Images/index_gr_13.gif)
![[Graphics:Images/index_gr_15.gif]](Images/index_gr_15.gif)
![[Graphics:Images/index_gr_17.gif]](Images/index_gr_17.gif)
![[Graphics:Images/index_gr_19.gif]](Images/index_gr_19.gif)
![[Graphics:Images/index_gr_21.gif]](Images/index_gr_21.gif)
The FeynCalc Book | ![]() | ![]() |