(*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 4.0, MathReader 4.0, or any compatible application. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 31209, 954]*) (*NotebookOutlinePosition[ 32009, 984]*) (* CellTagsIndexPosition[ 31933, 978]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["Integrate2", "Subsection", CellTags->"Integrate2"], Cell[CellGroupData[{ Cell["Description", "Subsubsection"], Cell[TextData[{ "Integrate2 is like Integrate, but : Integrate2[a_Plus, b__] := \ Map[Integrate2[#, b]&, a] ( more linear algebra and partial fraction \ decomposition is done) Integrate2[f[x] DeltaFunction[x], x] \[Rule] f[0] \ Integrate2[f[x] DeltaFunction[x0-x], x] \[Rule] f[x0]. Integrate2[f[x] \ DeltaFunction[a + b x], x] \[Rule] Integrate[f[x] (1/Abs[b]) \ DeltaFunction[a/b + x], x], where abs[b] \[Rule] b, if b is a Symbol, and if \ b = -c, then abs[-c] \[Rule] c, i.e., the variable contained in b is supposed \ to be positive. ", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(\[Pi]\^2\)\)\)]], " is replaced by 6 Zeta2. Integrate2[1/(1-y),{y,x,1}] is intepreted as \ distribution, i.e. as Integrate2[-1/(1-y)],{y, 0, x}] \[Rule] Log[1-y]. \ Integrate2[1/(1-x),{x,0,1}] \[Rule] 0." }], "Text"], Cell[TextData[{ "See also: ", " ", ButtonBox["DeltaFunction", ButtonData:>"DeltaFunction", ButtonStyle->"Hyperlink", ButtonNote->"DeltaFunction"], ", ", ButtonBox["Integrate3", ButtonData:>"Integrate3", ButtonStyle->"Hyperlink", ButtonNote->"Integrate3"], ", ", ButtonBox["SumS", ButtonData:>"SumS", ButtonStyle->"Hyperlink", ButtonNote->"SumS"], ", ", ButtonBox["SumT", ButtonData:>"SumT", ButtonStyle->"Hyperlink", ButtonNote->"SumT"], "." }], "Text"], Cell["\<\ NOTE: Since Integrate2 does do a reordering and partial fraction \ decomposition before calling the integral table of Integrate3 it will in \ general be slower compared to Integrate3 for sums of integrals. I.e., if the \ integrand has already an expanded form and if partial fraction decomposition \ is not necessary it is more effective to use Integrate3.\ \>", "Text"] }, Open ]], Cell[CellGroupData[{ Cell["Examples", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[Log[1 + x] Log[x]/\((1 - x)\), {x, 0, 1}] // Timing\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{"{", RowBox[{\(0.200000000000017053`\ Second\), ",", RowBox[{ TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]], "-", \(3\/2\ \(\[Zeta](2)\)\ \(log(2)\)\)}]}], "}"}], TraditionalForm]], "Output"] }, Open ]], Cell[TextData[{ "Since Integrate2 uses table-look-up methods it is much faster than ", StyleBox["Mathematica", FontSlant->"Italic"], "'s Integrate." }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[PolyLog[2, x^2], {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`\[Zeta](2) + 4\ \(log(2)\) - 4\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[PolyLog[3, \(-x\)], {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(\(\[Zeta](2)\)\/2\), "-", FractionBox[ RowBox[{"3", " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], "4"], "-", \(2\ \(log(2)\)\), "+", "1"}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[PolyLog[3, 1/\((1 + x)\)], {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(\(-\(log(2)\)\)\ \(\[Zeta](2)\)\), "+", FractionBox[ RowBox[{"3", " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], "4"], "+", \(\(\(log\^3\)(2)\)\/3\), "-", \(\(log\^2\)(2)\), "+", \(2\ \(log(2)\)\)}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[DeltaFunction[1 - x]\ f[x], {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`f(1)\)], "Output"] }, Open ]], Cell[TextData[{ "Integrate2 does integration in a Hadamard sense, i.e., ", Cell[BoxData[ \(TraditionalForm\`\(\(\[Integral]\_0\%1\)\(\(f( x)\) \[DifferentialD]x\)\(\ \)\)\)]], " means acutally expanding the result of ", Cell[BoxData[ \(TraditionalForm\`\(\(\[Integral]\_\[Delta]\%\(1 - \[Delta]\)\)\(\(f( x)\) \[DifferentialD]x\)\(\ \)\)\)]], "up do ", Cell[BoxData[ \(TraditionalForm\`O(\[Delta])\)]], " and neglecting all ", Cell[BoxData[ \(TraditionalForm\`\[Delta]\)]], "-dependent terms. E.g. ", Cell[BoxData[ \(TraditionalForm\`\(\(\[Integral]\_\[Delta]\%\(1 - \[Delta]\)1/\((1 - x)\) \[DifferentialD]x\ = \ \(\(\(\(-log\) \((1 - x)\)\)\( \[VerticalSeparator] \_\[Delta]\%\(1 - \ \[Delta]\)\)\) = \(-\(log(\[Delta])\)\) + log(1) \[Implies] 0. \)\)\(\ \)\)\)]] }], "Text", ZeroWidthTimes->False], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[1/\((1 - x)\), {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`0\)], "Output"] }, Open ]], Cell[TextData[{ "In the physics literature sometimes the \"+\" notation is used. In \ FeynCalc the ", Cell[BoxData[ \(TraditionalForm\`\(\((1\/\(1 - x\))\)\_+\)\)]], " is represented by ", Cell[BoxData[ \(TraditionalForm\`PlusDistribution[1/\((1 - x)\)]\)]], " or just ", Cell[BoxData[ \(TraditionalForm\`1/\(\((1 - x)\)\(\ \)\(.\)\)\)]] }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[PlusDistribution[1/\((1 - x)\)], {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`0\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[PolyLog[2, 1 - x]/\((1 - x)\)^2, {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`2 - \[Zeta](2)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[\((Log[x]\ Log[1 + x])\)/\((1 + x)\), {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{"-", FractionBox[ TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]], "8"]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[Log[x]^2/\((1 - x)\), {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{"2", " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[PolyLog[2, \(-x\)]/\((1 + x)\), {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ FractionBox[ TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]], "4"], "-", \(1\/2\ \(\[Zeta](2)\)\ \(log(2)\)\)}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[Log[x]\ PolyLog[2, x], {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`3 - 2\ \(\[Zeta](2)\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[x\ PolyLog[3, x], {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(-\(\(\[Zeta](2)\)\/4\)\), "+", FractionBox[ TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]], "2"], "+", \(3\/16\)}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[\((Log[x]^2\ Log[1 - x])\)/\((1 + x)\), {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`\(\(log\^2\)(2)\)\ \(\[Zeta](2)\) - 4\ \(\(Li\_4\)( 1\/2)\) - \(\(log\^4\)(2)\)\/6 + \[Pi]\^4\/90\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[ PolyLog[2, \((\((x\ \((1 - z)\) + z)\)\ \((1 - x + x\ z)\))\)/z]/\((1 - x + x\ z)\), {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(\(\(log\^3\)(z)\)\/\(6\ \((1 - z)\)\)\), "-", \(\(\(log(1 - z)\)\ \(\(log\^2\)(z)\)\)\/\(1 - z\)\), "-", \(\(\(log(z + 1)\)\ \(\(log\^2\)(z)\)\)\/\(1 - z\)\), "-", \(\(\[ImaginaryI]\ \[Pi]\ \(\(log\^2\)( z)\)\)\/\(2\ \((1 - z)\)\)\), "-", \(\(\(\[Zeta](2)\)\ \(log(z)\)\)\/\(1 - z\)\), "+", \(\(4\ \(log(1 - z)\)\ \(log(z + 1)\)\ \(log(z)\)\)\/\(1 - z\)\), "+", \(\(2\ \[ImaginaryI]\ \[Pi]\ \(log(z + 1)\)\ \(log( z)\)\)\/\(1 - z\)\), "-", \(\(2\ \(\(Li\_2\)(1 - z)\)\ \(log(z)\)\)\/\(1 - z\)\), "-", \(\(2\ \(\(Li\_2\)(\(-z\))\)\ \(log(z)\)\)\/\(1 - z\)\), "-", \(\(2\ \(\(log\^3\)(z + 1)\)\)\/\(3\ \((1 - z)\)\)\), "+", \(\(\[ImaginaryI]\ \[Pi]\ \(\[Zeta](2)\)\)\/\(1 - z\)\), "+", \(\(2\ \(\[Zeta](2)\)\ \(log(1 - z)\)\)\/\(1 - z\)\), "+", \(\(2\ \(\[Zeta](2)\)\ \(log(z + 1)\)\)\/\(1 - z\)\), "-", FractionBox[ RowBox[{"2", " ", RowBox[{ SubscriptBox["S", RowBox[{ FormBox["1", "TraditionalForm"], "\[NoBreak]", FormBox["2", "TraditionalForm"]}]], "(", FormBox[\(1 - z\), "TraditionalForm"], ")"}]}], \(1 - z\)], "+", \(\(4\ \(log(1 - z)\)\ \(\(Li\_2\)(\(-z\))\)\)\/\(1 - z\)\), "+", \(\(2\ \[ImaginaryI]\ \[Pi]\ \(\(Li\_2\)(\(-z\))\)\)\/\(1 - z\)\), "+", \(\(4\ \(\(Li\_3\)(1 - z)\)\)\/\(1 - z\)\), "+", \(\(2\ \(\(Li\_3\)(\(-z\))\)\)\/\(1 - z\)\), "+", \(\(4\ \(\(Li\_3\)(1\/\(z + 1\))\)\)\/\(1 - z\)\), "+", \(\(4\ \(\(Li\_3\)(\(-\(\(1 - z\)\/\(z + 1\)\)\))\)\)\/\(1 - z\)\), "-", \(\(4\ \(\(Li\_3\)(\(1 - z\)\/\(z + 1\))\)\)\/\(1 - z\)\), "-", FractionBox[ RowBox[{"2", " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], \(1 - z\)]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Apart[Integrate2[x^\((OPEm - 1)\)\ PolyLog[3, 1 - x], {x, 0, 1}], OPEm]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(-\(\(\[Zeta](2)\)\/\(m - 1\)\)\), "-", \(\(\[Zeta](2)\)\/m\^2\), "+", FractionBox[ RowBox[{ RowBox[{ RowBox[{"-", RowBox[{\(S\_1\), "(", FormBox[\(m - 2\), "TraditionalForm"], ")"}]}], " ", \(\[Zeta](2)\)}], "+", \(\[Zeta](2)\), "+", RowBox[{\(S\_12\), "(", FormBox["m", "TraditionalForm"], ")"}], "+", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], "m"]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[ x^\((OPEm - 1)\)\ Log[1 - x]\ Log[x]\ Log[1 + x]\/\(1 + x\), {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{\(1\/4\), " ", \(\((\(-1\))\)\^m\), " ", \(\[Zeta](2)\), " ", RowBox[{\(S\_\(-1\)\%2\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(\((\(-1\))\)\^m\), " ", \(log(2)\), " ", RowBox[{\(S\_\(-2\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}], " ", RowBox[{\(S\_\(-1\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "-", RowBox[{\(\((\(-1\))\)\^m\), " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]], " ", RowBox[{\(S\_\(-1\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(3\/2\), " ", \(\((\(-1\))\)\^m\), " ", \(\[Zeta](2)\), " ", \(log(2)\), " ", RowBox[{\(S\_\(-1\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "-", RowBox[{\(1\/2\), " ", \(\((\(-1\))\)\^m\), " ", \(\[Zeta](2)\), " ", RowBox[{\(S\_\(-2\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(1\/2\), " ", \(\((\(-1\))\)\^m\), " ", \(\(log\^2\)(2)\), " ", RowBox[{\(S\_\(-2\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "-", RowBox[{\(3\/2\), " ", \(\((\(-1\))\)\^m\), " ", \(\[Zeta](2)\), " ", \(log(2)\), " ", RowBox[{\(S\_1\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(3\/4\), " ", \(\((\(-1\))\)\^m\), " ", \(\[Zeta](2)\), " ", RowBox[{\(S\_2\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "-", RowBox[{\(1\/2\), " ", \(\((\(-1\))\)\^m\), " ", \(\(log\^2\)(2)\), " ", RowBox[{\(S\_2\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(\((\(-1\))\)\^m\), " ", \(log(2)\), " ", RowBox[{\(S\_3\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "-", RowBox[{\(\((\(-1\))\)\^m\), " ", \(log(2)\), " ", RowBox[{\(S\_\(-21\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "-", RowBox[{\(\((\(-1\))\)\^m\), " ", \(log(2)\), " ", RowBox[{\(S\_\(-12\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "-", RowBox[{\(\((\(-1\))\)\^m\), " ", \(\[Zeta](2)\), " ", RowBox[{\(S\_\(1 - 1\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(\(-2\) - 1 - 1\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(\(-1\) - 2 - 1\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(\(-1\) - 1 - 2\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(1 - 21\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(1 - 12\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(2 - 11\)\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}]}], "+", RowBox[{\(13\/8\), " ", \(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_1\), "(", FormBox[\(m - 1\), "TraditionalForm"], ")"}], " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], "-", RowBox[{\(21\/8\), " ", \(\((\(-1\))\)\^m\), " ", \(log(2)\), " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], "-", \(2\ \((\(-1\))\)\^m\ \(\(Li\_4\)(1\/2)\)\), "-", \(1\/12\ \((\(-1\))\)\^m\ \(\(log\^4\)(2)\)\), "+", \(5\/4\ \((\(-1\))\)\^m\ \(\[Zeta](2)\)\ \(\(log\^2\)(2)\)\), "+", \(1\/45\ \((\(-1\))\)\^m\ \[Pi]\^4\)}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(%\ /. \ OPEm \[Rule] 2\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{\(5\/4\ \(\(log\^2\)(2)\)\ \(\[Zeta](2)\)\), "-", \(3\ \(log(2)\)\ \(\[Zeta](2)\)\), "+", \(\(5\ \(\[Zeta](2)\)\)\/2\), "-", RowBox[{\(21\/8\), " ", \(log(2)\), " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], "+", FractionBox[ RowBox[{"21", " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], "8"], "-", \(2\ \(\(Li\_4\)(1\/2)\)\), "-", \(\(\(log\^4\)(2)\)\/12\), "-", \(\(log\^2\)(2)\), "+", \(4\ \(log(2)\)\), "+", \(\[Pi]\^4\/45\), "-", "6"}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(N[%]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`0.0505138354027443448`\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(NIntegrate[ x\ Log[1 - x]\ Log[x]\ Log[1 + x]\/\(1 + x\), {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`0.0505138353982719667`\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[ x^\((OPEm - 1)\)\ \((PolyLog[3, \(1 - x\)\/\(1 + x\)] - PolyLog[3, \(-\(\(1 - x\)\/\(1 + x\)\)\)])\), {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(-1\)\), "(", FormBox["m", "TraditionalForm"], ")"}], " ", \(\[Zeta](2)\)}], "m"], "-", FractionBox[ RowBox[{ RowBox[{\(S\_\(-1\)\), "(", FormBox["m", "TraditionalForm"], ")"}], " ", \(\[Zeta](2)\)}], \(2\ m\)], "+", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_1\), "(", FormBox["m", "TraditionalForm"], ")"}], " ", \(\[Zeta](2)\)}], \(2\ m\)], "-", FractionBox[ RowBox[{ RowBox[{\(S\_1\), "(", FormBox["m", "TraditionalForm"], ")"}], " ", \(\[Zeta](2)\)}], "m"], "+", \(\(3\ \((\(-1\))\)\^m\ \(log(2)\)\ \(\[Zeta](2)\)\)\/\(2\ m\)\), "-", \(\(3\ \(log(2)\)\ \(\[Zeta](2)\)\)\/\(2\ m\)\), "+", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(-3\)\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "+", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(-2\)\), "(", FormBox["m", "TraditionalForm"], ")"}], " ", RowBox[{\(S\_1\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "+", FractionBox[ RowBox[{ RowBox[{\(S\_1\), "(", FormBox["m", "TraditionalForm"], ")"}], " ", RowBox[{\(S\_2\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "+", FractionBox[ RowBox[{\(S\_3\), "(", FormBox["m", "TraditionalForm"], ")"}], "m"], "-", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(-21\)\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "-", FractionBox[ RowBox[{\(S\_\(\(-1\) - 2\)\), "(", FormBox["m", "TraditionalForm"], ")"}], "m"], "-", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(-12\)\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "-", FractionBox[ RowBox[{\(S\_21\), "(", FormBox["m", "TraditionalForm"], ")"}], "m"], "-", FractionBox[ RowBox[{"7", " ", \(\((\(-1\))\)\^m\), " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], \(8\ m\)], "+", FractionBox[ RowBox[{"21", " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], \(8\ m\)]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(DataType[OPEm, PositiveInteger]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`True\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[ x^\((OPEm - 1)\)\ DeltaFunction[1 - x], {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`1\)], "Output"] }, Open ]], Cell["\<\ This is the polarized non-singlet spin splitting function whose \ first moment vanishes.\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(t = SplittingFunction[PQQNS]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{\(\(-4\)\ \((x + 1)\)\ \(\(log\^2\)(x)\)\), "-", \(8\ \((2\ x + 3\/\(1 - x\))\)\ \(log(x)\)\), "-", \(\(16\ \((x\^2 + 1)\)\ \(log(1 - x)\)\ \(log( x)\)\)\/\(1 - x\)\), "-", \(40\ \((1 - x)\)\), "+", RowBox[{ RowBox[{"\[Delta]", "(", FormBox[\(1 - x\), "TraditionalForm"], ")"}], " ", RowBox[{"(", RowBox[{\(\(-24\)\ \(\[Zeta](2)\)\), "+", RowBox[{"48", " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], "+", "3"}], ")"}]}]}], ")"}], " ", \(C\_F\%2\)}], "+", RowBox[{\(N\_f\), " ", RowBox[{"(", RowBox[{\(\(88\ x\)\/9\), "+", RowBox[{\((\(-\(\(16\ \(\[Zeta](2)\)\)\/3\)\) - 2\/3)\), " ", RowBox[{"\[Delta]", "(", FormBox[\(1 - x\), "TraditionalForm"], ")"}]}], "-", \(\(8\ \((x\^2 + 1)\)\ \(log(x)\)\)\/\(3\ \((1 - x)\)\)\), "-", \(80\/9\ \(\((1\/\(1 - x\))\)\_+\)\), "-", \(8\/9\)}], ")"}], " ", \(C\_F\)}], "-", \(8\ \((C\_F - C\_A\/2)\)\ \((4\ \((1 - x)\) + 2\ \((x + 1)\)\ \(log( x)\) + \(\((x\^2 + 1)\)\ \((\(log\^2\)(x) - 4\ \(log(x + 1)\ \)\ \(log(x)\) - 2\ \(\[Zeta](2)\) - 4\ \(\(Li\_2\)(\(-x\))\))\)\)\/\(x + \ 1\))\)\ C\_F\), "+", RowBox[{\(C\_A\), " ", RowBox[{"(", RowBox[{\(\(4\ \((x\^2 + 1)\)\ \(\(log\^2\)(x)\)\)\/\(1 - x\)\), "-", \(4\/3\ \((5\ x - 22\/\(1 - x\) + 5)\)\ \(log(x)\)\), "+", \(4\/9\ \((53 - 187\ x)\)\), "+", \(8\ \((x + 1)\)\ \(\[Zeta](2)\)\), "+", \(\((536\/9 - 16\ \(\[Zeta](2)\))\)\ \(\((1\/\(1 - x\))\)\_+\)\), "+", RowBox[{ RowBox[{"\[Delta]", "(", FormBox[\(1 - x\), "TraditionalForm"], ")"}], " ", RowBox[{"(", RowBox[{\(\(88\ \(\[Zeta](2)\)\)\/3\), "-", RowBox[{"24", " ", TagBox[ RowBox[{"\[Zeta]", "(", TagBox["3", (Editable -> True)], ")"}], InterpretTemplate[ Zeta[ #]&]]}], "+", \(17\/3\)}], ")"}]}]}], ")"}], " ", \(C\_F\)}]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[t, {x, 0, 1}] // Timing\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{1.62999999999999545`\ Second, 0}\)], "Output"] }, Open ]], Cell["\<\ Expanding t with respect to x yields a form already suitable for \ Integrate3 and therefore the following is faster:\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(\(Integrate3[Expand[t, x], {x, 0, 1}] // Expand\) // Timing\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{0.489999999999980673`\ Second, 0}\)], "Output"] }, Open ]], Cell[BoxData[ \(Clear[t]; \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[DeltaFunction[1 - x]\ f[x], {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`f(1)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[\(x\^5\) Log[1 + x]^2, {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`\(-\(6959\/10800\)\) + \(46\ \(log(2)\)\)\/45\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(N@%\)], "Input"], Cell[BoxData[ \(TraditionalForm\`0.0641985993872032878`\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(NIntegrate[\(x\^5\) Log[1 + x]^2, {x, 0, 1}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`0.0641985993872023463`\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Integrate2[x^\((OPEm - 1)\) Log[1 + x]\^2, {x, 0, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"-", FractionBox[ RowBox[{"2", " ", \(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_1\%2\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"]}], "+", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_1\), "(", FormBox[\(\(m - 1\)\/2\), "TraditionalForm"], ")"}], " ", RowBox[{\(S\_1\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "-", FractionBox[ RowBox[{ RowBox[{\(S\_1\), "(", FormBox[\(\(m - 1\)\/2\), "TraditionalForm"], ")"}], " ", RowBox[{\(S\_1\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "+", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_1\), "(", FormBox[\(m\/2\), "TraditionalForm"], ")"}], " ", RowBox[{\(S\_1\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "+", FractionBox[ RowBox[{ RowBox[{\(S\_1\), "(", FormBox[\(m\/2\), "TraditionalForm"], ")"}], " ", RowBox[{\(S\_1\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "+", FractionBox[ RowBox[{"4", " ", \(\((\(-1\))\)\^m\), " ", \(log(2)\), " ", RowBox[{\(S\_1\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "-", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", \(log(2)\), " ", RowBox[{\(S\_1\), "(", FormBox[\(\(m - 1\)\/2\), "TraditionalForm"], ")"}]}], "m"], "+", FractionBox[ RowBox[{\(log(2)\), " ", RowBox[{\(S\_1\), "(", FormBox[\(\(m - 1\)\/2\), "TraditionalForm"], ")"}]}], "m"], "-", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", \(log(2)\), " ", RowBox[{\(S\_1\), "(", FormBox[\(m\/2\), "TraditionalForm"], ")"}]}], "m"], "-", FractionBox[ RowBox[{\(log(2)\), " ", RowBox[{\(S\_1\), "(", FormBox[\(m\/2\), "TraditionalForm"], ")"}]}], "m"], "+", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_2\), "(", FormBox[\(\(m - 1\)\/2\), "TraditionalForm"], ")"}]}], \(2\ m\)], "-", FractionBox[ RowBox[{\(S\_2\), "(", FormBox[\(\(m - 1\)\/2\), "TraditionalForm"], ")"}], \(2\ m\)], "+", FractionBox[ RowBox[{\(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_2\), "(", FormBox[\(m\/2\), "TraditionalForm"], ")"}]}], \(2\ m\)], "+", FractionBox[ RowBox[{\(S\_2\), "(", FormBox[\(m\/2\), "TraditionalForm"], ")"}], \(2\ m\)], "-", FractionBox[ RowBox[{"2", " ", \(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_2\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "-", FractionBox[ RowBox[{"2", " ", \(\((\(-1\))\)\^m\), " ", RowBox[{\(S\_\(-11\)\), "(", FormBox["m", "TraditionalForm"], ")"}]}], "m"], "-", \(\(\((\(-1\))\)\^m\ \(\(log\^2\)(2)\)\)\/m\), "+", \(\(\(log\^2\)(2)\)\/m\)}], TraditionalForm]], "Output"] }, Open ]] }, Open ]] }, Open ]] }, FrontEndVersion->"4.0 for X", ScreenRectangle->{{0, 1024}, {0, 768}}, WindowSize->{520, 485}, WindowMargins->{{Automatic, 244}, {114, Automatic}}, StyleDefinitions -> "Demo.nb" ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{ "Integrate2"->{ Cell[1739, 51, 58, 1, 40, "Subsection", CellTags->"Integrate2"]} } *) (*CellTagsIndex CellTagsIndex->{ {"Integrate2", 31832, 971} } *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1739, 51, 58, 1, 40, "Subsection", CellTags->"Integrate2"], Cell[CellGroupData[{ Cell[1822, 56, 36, 0, 36, "Subsubsection"], Cell[1861, 58, 813, 14, 141, "Text"], Cell[2677, 74, 521, 23, 29, "Text"], Cell[3201, 99, 380, 6, 85, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[3618, 110, 33, 0, 36, "Subsubsection"], Cell[CellGroupData[{ Cell[3676, 114, 102, 2, 47, "Input"], Cell[3781, 118, 404, 11, 63, "Output"] }, Open ]], Cell[4200, 132, 170, 5, 70, "Text"], Cell[CellGroupData[{ Cell[4395, 141, 71, 1, 70, "Input"], Cell[4469, 144, 81, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4587, 150, 74, 1, 70, "Input"], Cell[4664, 153, 380, 10, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5081, 168, 81, 1, 70, "Input"], Cell[5165, 171, 448, 11, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5650, 187, 82, 1, 70, "Input"], Cell[5735, 190, 55, 1, 70, "Output"] }, Open ]], Cell[5805, 194, 928, 23, 70, "Text"], Cell[CellGroupData[{ Cell[6758, 221, 69, 1, 70, "Input"], Cell[6830, 224, 52, 1, 70, "Output"] }, Open ]], Cell[6897, 228, 379, 11, 70, "Text"], Cell[CellGroupData[{ Cell[7301, 243, 87, 1, 70, "Input"], Cell[7391, 246, 52, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7480, 252, 87, 1, 70, "Input"], Cell[7570, 255, 65, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7672, 261, 92, 1, 70, "Input"], Cell[7767, 264, 280, 9, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8084, 278, 76, 1, 70, "Input"], Cell[8163, 281, 241, 7, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8441, 293, 86, 1, 70, "Input"], Cell[8530, 296, 327, 10, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8894, 311, 77, 1, 70, "Input"], Cell[8974, 314, 72, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9083, 320, 72, 1, 70, "Input"], Cell[9158, 323, 324, 9, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9519, 337, 103, 2, 70, "Input"], Cell[9625, 341, 165, 3, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[9827, 349, 159, 3, 70, "Input"], Cell[9989, 354, 2177, 43, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[12203, 402, 111, 2, 70, "Input"], Cell[12317, 406, 738, 20, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[13092, 431, 131, 3, 70, "Input"], Cell[13226, 436, 4786, 113, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18049, 554, 56, 1, 70, "Input"], Cell[18108, 557, 853, 20, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18998, 582, 37, 1, 70, "Input"], Cell[19038, 585, 73, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19148, 591, 107, 2, 70, "Input"], Cell[19258, 595, 73, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19368, 601, 185, 4, 70, "Input"], Cell[19556, 607, 3116, 84, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22709, 696, 64, 1, 70, "Input"], Cell[22776, 699, 55, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[22868, 705, 101, 2, 70, "Input"], Cell[22972, 709, 52, 1, 70, "Output"] }, Open ]], Cell[23039, 713, 112, 3, 70, "Text"], Cell[CellGroupData[{ Cell[23176, 720, 61, 1, 70, "Input"], Cell[23240, 723, 2798, 60, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26075, 788, 67, 1, 70, "Input"], Cell[26145, 791, 84, 1, 70, "Output"] }, Open ]], Cell[26244, 795, 140, 3, 70, "Text"], Cell[CellGroupData[{ Cell[26409, 802, 92, 1, 70, "Input"], Cell[26504, 805, 85, 1, 70, "Output"] }, Open ]], Cell[26604, 809, 43, 1, 70, "Input"], Cell[CellGroupData[{ Cell[26672, 814, 82, 1, 70, "Input"], Cell[26757, 817, 55, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26849, 823, 77, 1, 70, "Input"], Cell[26929, 826, 98, 2, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27064, 833, 36, 1, 70, "Input"], Cell[27103, 836, 73, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27213, 842, 77, 1, 70, "Input"], Cell[27293, 845, 73, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27403, 851, 86, 1, 70, "Input"], Cell[27492, 854, 3677, 95, 70, "Output"] }, Open ]] }, Open ]] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)