(*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 4.0, MathReader 4.0, or any compatible application. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 28944, 818]*) (*NotebookOutlinePosition[ 29744, 848]*) (* CellTagsIndexPosition[ 29668, 842]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell["CovariantD", "Subsection", CellTags->"CovariantD"], Cell[CellGroupData[{ Cell["Description", "Subsubsection"], Cell["\<\ CovariantD[mu, a, b] is the covariant derivative for a bosonic \ field. CovariantD[mu] is the covariant derivative for a fermionic field. \ CovariantD[OPEDelta, a, b] is a short form for \ CovariantD[mu,a,b]*FourVector[OPEDelta, mu]. CovariantD[{OPEDelta, a, b}, \ {n}] yields the product of m operators., where n is an integer. \ CovariantD[OPEDelta, a, b, {m, n}] gives the expanded form of \ CovariantD[OPEDelta, a, b]^m up to order g^n for the gluon, where n is an \ integer and g the couplingconstant indicated by the setting of the option \ CouplingConstant. CovariantD[OPEDelta, {m, n}] gives the expanded form of \ CovariantD[OPEDelta]^m up to order g^n of the fermionic field.\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(Options[CovariantD]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{CouplingConstant \[Rule] g\_s, DummyIndex \[Rule] Automatic, Explicit \[Rule] False, PartialD \[Rule] RightPartialD, QuantumField \[Rule] A}\)], "Output"] }, Open ]], Cell["\<\ Possible settings of PartialD are: LeftPartialD, \ LeftRigthPartialD, RightPartialD. The default setting of QuantumField is \ GaugeField.\ \>", "Text"], Cell[TextData[{ "See also: ", " ", ButtonBox["LeftPartialD", ButtonData:>"LeftPartialD", ButtonStyle->"Hyperlink", ButtonNote->"LeftPartialD"], ", ", ButtonBox["LeftRightPartialD", ButtonData:>"LeftRightPartialD", ButtonStyle->"Hyperlink", ButtonNote->"LeftRightPartialD"], ", ", ButtonBox["RightPartialD", ButtonData:>"RightPartialD", ButtonStyle->"Hyperlink", ButtonNote->"RightPartialD"], "." }], "Text"] }, Open ]], Cell[CellGroupData[{ Cell["Examples", "Subsubsection"], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[\[Mu]]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`D\_\[Mu]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[\[Mu], a, b]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`D\_\[Mu]\%\(a\[NoBreak]b\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[\[Mu], Explicit \[Rule] True]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"]], "-", RowBox[{"\[ImaginaryI]", " ", \(g\_s\), " ", RowBox[{ SubscriptBox["T", FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox[ FormBox["\[Mu]", "TraditionalForm"], "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]]}]}]}], TraditionalForm]], "Output"] }, Open ]], Cell["\<\ The first argument of CovariantD is intepreted as type \ LorentzIndex, except for OPEDelta, which is type Momentum.\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta]\)], "Input"], Cell[BoxData[ FormBox[ SubscriptBox["D", FormBox["\[CapitalDelta]", "TraditionalForm"]], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, a, b]\)], "Input"], Cell[BoxData[ FormBox[ SubsuperscriptBox["D", FormBox["\[CapitalDelta]", "TraditionalForm"], \(a\[NoBreak]b\)], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, a, b, Explicit -> True]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], " ", \(\[Delta]\_\(a\[NoBreak]b\)\)}], "-", RowBox[{\(g\_s\), " ", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_2\), Subscripted[ c[ 2]], Editable->False], "TraditionalForm"], "TraditionalForm"]], " ", SubscriptBox["f", RowBox[{"a", "\[NoBreak]", "b", "\[NoBreak]", FormBox[ InterpretationBox[\(c\_2\), Subscripted[ c[ 2]], Editable->False], "TraditionalForm"]}]]}]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, Explicit -> True]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], "-", RowBox[{"\[ImaginaryI]", " ", \(g\_s\), " ", RowBox[{ SubscriptBox["T", FormBox[ FormBox[ InterpretationBox[\(c\_3\), Subscripted[ c[ 3]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_3\), Subscripted[ c[ 3]], Editable->False], "TraditionalForm"], "TraditionalForm"]]}]}]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, a, b, {2}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], " ", \(\[Delta]\_\(a\[NoBreak]c8\)\)}], "-", RowBox[{\(g\_s\), " ", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["e1", "TraditionalForm"], "TraditionalForm"]], " ", \(f\_\(a\[NoBreak]c8\[NoBreak]e1\)\)}]}], ")"}], ".", RowBox[{"(", RowBox[{ RowBox[{ SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], " ", \(\[Delta]\_\(b\[NoBreak]c8\)\)}], "-", RowBox[{\(g\_s\), " ", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox["e2", "TraditionalForm"], "TraditionalForm"]], " ", \(f\_\(c8\[NoBreak]b\[NoBreak]e2\)\)}]}], ")"}]}], TraditionalForm]], "Output"] }, Open ]], Cell[TextData[{ "This gives", Cell[BoxData[ \(TraditionalForm\`\(\(\ \)\(m\ times\ \(\[PartialD]\& \[RightArrow] \)\ \_\[CapitalDelta]\)\(,\)\(\ \)\)\)]], "the partial derivative ", Cell[BoxData[ \(TraditionalForm\`\(\[PartialD]\& \[RightArrow] \)\_\(\(\[Mu]\)\(\ \ \)\)\)]], "contracted with ", Cell[BoxData[ \(TraditionalForm\`\(\(\[CapitalDelta]\^\[Mu]\)\(.\)\)\)]] }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, a, b, {OPEm, 0}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], "m"], " ", SubscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"]}]]}], TraditionalForm]], "Output"] }, Open ]], Cell[TextData[{ "The expansion up to first order in the coupling constant ", Cell[BoxData[ \(TraditionalForm\`g\_s\ \(\((the sum is the FeynCalc OPESum)\)\(.\)\)\)]] }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, a, b, {OPEm, 1}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], "m"], " ", SubscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"]}]]}], "-", RowBox[{\(g\_s\), " ", FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(i = 0\)\%\(m - 1\)\), RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], "i"], ".", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], \(\(-i\) + m - 1\)]}], " ", SubscriptBox["f", RowBox[{ FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]}]]}]}], HoldForm], "TraditionalForm"]}]}], TraditionalForm]], "Output"] }, Open ]], Cell[TextData[{ "The expansion up to second order in the ", Cell[BoxData[ \(TraditionalForm\`\(\(g\_s\)\(.\)\)\)]] }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, a, b, {OPEm, 2}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ SubscriptBox["\[Delta]", RowBox[{ FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"]}]], " ", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], "m"]}], "-", RowBox[{\(g\_s\%2\), " ", FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(j = 0\)\%\(m - 2\)\), FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(i = 0\)\%j\), RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], "i"], ".", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], \(j - i\)], ".", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_2\), Subscripted[ c[ 2]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], \(\(-j\) + m - 2\)]}], " ", SubscriptBox["f", RowBox[{ FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox[ InterpretationBox[\(e\_1\), Subscripted[ e[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]}]], " ", SubscriptBox["f", RowBox[{ FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox[ InterpretationBox[\(c\_2\), Subscripted[ c[ 2]], Editable->False], "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox[ InterpretationBox[\(e\_1\), Subscripted[ e[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]}]]}]}], HoldForm], "TraditionalForm"]}], HoldForm], "TraditionalForm"]}], "-", RowBox[{\(g\_s\), " ", FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(i = 0\)\%\(m - 1\)\), RowBox[{ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], "i"], ".", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], \(\(-i\) + m - 1\)]}], " ", SubscriptBox["f", RowBox[{ FormBox[ FormBox["a", "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox["b", "TraditionalForm"], "TraditionalForm"], "\[NoBreak]", FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]}]]}]}], HoldForm], "TraditionalForm"]}]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, a, b]\^OPEm\)], "Input"], Cell[BoxData[ FormBox[ SuperscriptBox[ RowBox[{"(", SubsuperscriptBox["D", FormBox["\[CapitalDelta]", "TraditionalForm"], \(a\[NoBreak]b\)], ")"}], "m"], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, {OPEm, 2}]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], "m"], "-", RowBox[{"\[ImaginaryI]", " ", \(g\_s\), " ", FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(i = 0\)\%\(m - 1\)\), RowBox[{ SubscriptBox["T", FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], "i"], ".", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], \(\(-i\) + m - 1\)]}]}], HoldForm], "TraditionalForm"]}], "-", RowBox[{\(g\_s\%2\), " ", FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(j = 0\)\%\(m - 2\)\), FormBox[ TagBox[ RowBox[{\(\[Sum]\+\(i = 0\)\%j\), RowBox[{ SubscriptBox["T", FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SubscriptBox["T", FormBox[ FormBox[ InterpretationBox[\(c\_2\), Subscripted[ c[ 2]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], "i"], ".", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_1\), Subscripted[ c[ 1]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], \(j - i\)], ".", SubsuperscriptBox[ FormBox["A", "TraditionalForm"], FormBox["\[CapitalDelta]", "TraditionalForm"], FormBox[ FormBox[ InterpretationBox[\(c\_2\), Subscripted[ c[ 2]], Editable->False], "TraditionalForm"], "TraditionalForm"]], ".", SuperscriptBox[ RowBox[{"(", SubscriptBox[\(\[PartialD]\& \[RightArrow] \), FormBox["\[CapitalDelta]", "TraditionalForm"]], ")"}], \(\(-j\) + m - 2\)]}]}], HoldForm], "TraditionalForm"]}], HoldForm], "TraditionalForm"]}]}], TraditionalForm]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[OPEDelta, Explicit -> True] // StandardForm\)], "Input"], Cell[BoxData[ RowBox[{ RowBox[{\(-I\), " ", "Gstrong", " ", RowBox[{ RowBox[{"SUNT", "[", RowBox[{"SUNIndex", "[", InterpretationBox[\(c\_4\), Subscripted[ c[ 4]], Editable->False], "]"}], "]"}], ".", RowBox[{"QuantumField", "[", RowBox[{"GaugeField", ",", \(Momentum[OPEDelta]\), ",", RowBox[{"SUNIndex", "[", InterpretationBox[\(c\_4\), Subscripted[ c[ 4]], Editable->False], "]"}]}], "]"}]}]}], "+", \(RightPartialD[Momentum[OPEDelta]]\)}]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(CovariantD[\[Mu], a, b, Explicit -> True] // StandardForm\)], "Input"], Cell[BoxData[ RowBox[{\(RightPartialD[LorentzIndex[\[Mu]]]\ SUNDelta[a, b]\), "-", RowBox[{"Gstrong", " ", RowBox[{"QuantumField", "[", RowBox[{"GaugeField", ",", \(LorentzIndex[\[Mu]]\), ",", RowBox[{"SUNIndex", "[", InterpretationBox[\(c\_5\), Subscripted[ c[ 5]], Editable->False], "]"}]}], "]"}], " ", RowBox[{"SUNF", "[", RowBox[{"a", ",", "b", ",", InterpretationBox[\(c\_5\), Subscripted[ c[ 5]], Editable->False]}], "]"}]}]}]], "Output"] }, Open ]] }, Open ]] }, Open ]] }, FrontEndVersion->"4.0 for X", ScreenRectangle->{{0, 1024}, {0, 768}}, WindowSize->{520, 485}, WindowMargins->{{Automatic, 244}, {114, Automatic}}, StyleDefinitions -> "Demo.nb" ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{ "CovariantD"->{ Cell[1739, 51, 58, 1, 40, "Subsection", CellTags->"CovariantD"]} } *) (*CellTagsIndex CellTagsIndex->{ {"CovariantD", 29567, 835} } *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1739, 51, 58, 1, 40, "Subsection", CellTags->"CovariantD"], Cell[CellGroupData[{ Cell[1822, 56, 36, 0, 36, "Subsubsection"], Cell[1861, 58, 709, 11, 155, "Text"], Cell[CellGroupData[{ Cell[2595, 73, 52, 1, 31, "Input"], Cell[2650, 76, 206, 3, 65, "Output"] }, Open ]], Cell[2871, 82, 162, 4, 43, "Text"], Cell[3036, 88, 459, 18, 29, "Text"] }, Open ]], Cell[CellGroupData[{ Cell[3532, 111, 33, 0, 36, "Subsubsection"], Cell[CellGroupData[{ Cell[3590, 115, 50, 1, 70, "Input"], Cell[3643, 118, 59, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3739, 124, 56, 1, 70, "Input"], Cell[3798, 127, 77, 1, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3912, 133, 73, 1, 70, "Input"], Cell[3988, 136, 1131, 33, 70, "Output"] }, Open ]], Cell[5134, 172, 139, 3, 70, "Text"], Cell[CellGroupData[{ Cell[5298, 179, 53, 1, 70, "Input"], Cell[5354, 182, 146, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5537, 191, 59, 1, 70, "Input"], Cell[5599, 194, 169, 4, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5805, 203, 77, 1, 70, "Input"], Cell[5885, 206, 1023, 29, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6945, 240, 71, 1, 70, "Input"], Cell[7019, 243, 1033, 29, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8089, 277, 64, 1, 70, "Input"], Cell[8156, 280, 1463, 39, 70, "Output"] }, Open ]], Cell[9634, 322, 410, 12, 70, "Text"], Cell[CellGroupData[{ Cell[10069, 338, 70, 1, 70, "Input"], Cell[10142, 341, 584, 17, 70, "Output"] }, Open ]], Cell[10741, 361, 207, 5, 70, "Text"], Cell[CellGroupData[{ Cell[10973, 370, 70, 1, 70, "Input"], Cell[11046, 373, 2751, 68, 70, "Output"] }, Open ]], Cell[13812, 444, 136, 4, 70, "Text"], Cell[CellGroupData[{ Cell[13973, 452, 70, 1, 70, "Input"], Cell[14046, 455, 7542, 168, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21625, 628, 65, 1, 70, "Input"], Cell[21693, 631, 245, 7, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[21975, 643, 64, 1, 70, "Input"], Cell[22042, 646, 5290, 119, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27369, 770, 87, 1, 70, "Input"], Cell[27459, 773, 682, 17, 70, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28178, 795, 90, 1, 70, "Input"], Cell[28271, 798, 633, 15, 70, "Output"] }, Open ]] }, Open ]] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)